Abstract:
According to two aspects of the invention, a FED and a process for making a FED are provided which effectuate more accurate and efficient sealing between a faceplate and a backplate assembly, with more accurate and efficient sealing between the faceplate and cathode member. The FED is made according to a process including: aligning the faceplate and the cathode member; disposing an adhesive between the faceplate and the cathode member; pressing the faceplate and the cathode member together; disposing a frit seal between the faceplate and the backplate assembly; and heating the frit seal to a temperature sufficient to cause the frit to seal.
Abstract:
A ferroelectric cold cathode comprising a ferroelectric layer formed of a ferroelectric material and provided on its one surface with an emitter which is a projection having a sharp tip portion, a first electrode layer formed on one surface of the ferroelectric layer and having an opening allowing the sharp tip portion of the emitter to be exposed therethrough, and a second electrode layer formed on the other surface of the ferroelectric layer. When a voltage is applied between the first electrode and the second electrode, a dielectric polarization is reversed in the ferroelectric layer, resulting in the emission of electrons from the sharp tip portion of the emitter.
Abstract:
A flat panel image sensor is provided by combining the photoconductive imaging electrode of a vidicon with a two dimensional array of cold cathode field emitters commonly used for flat panel Field Emission Display (FED) systems. The FED operates normally to emit electrons which are accelerated in prior art displays towards a luminescent phosphor to generate light output proportional to the cathode emission. Rather than accelerating towards a phosphor, electrons, in accordance with the principles of this invention, are accelerated towards a photoconductor layer to replace charge removed from the layer by an incident radiation pattern directed at the photoconductor layer through a layer of transparant, electrically-conducting material which serves as a radiation window. A large area, low cost, small, flat panel sensor is realized. The transparant, electrically-conducting layer may be partitioned to reduce stray capacitance for large area sensors and the partitioned, electrically-conducting layer permits a parallel readout mode of operation. The sensor includes a means for collimating and focusing the electron beams and may be used with infra red and ultra violet photoconductor materials.
Abstract:
A field emission cathode for use in flat panel displays is disclosed comprising a layer of conductive material and a layer of amorphic diamond film, functioning as a low effective work-function material, deposited over the conductive material to form emission sites. The emission sites each contain at least two sub-regions having differing electron affinities. Use of the cathode to form a computer screen is also disclosed along with the use of the cathode to form a fluorescent light source.
Abstract:
An electroluminescent display formed on a ceramic substrate having a front ceramic surface and a back ceramic surface. The ceramic substrate includes a metal core that provides structural support, electrical ground, and heat dissipation. Electroluminescent cells are mounted on the front ceramic surface and driver circuits for driving the of electroluminescent cells are mounted on the back ceramic surface. The driver circuits are positioned directly behind said electroluminescent cells. Connectors extend through said ceramic substrate and the electroluminescent cells to different driver circuits. By positioning the driver circuits close to the EL cells, the drive lines from the drivers to the EL cells are short which allows for high refresh rates and low resistance losses. Each of the driver circuits can drive one electroluminescent cell or a group of electroluminescent cells. EL display cells coupled to a cermet electrode can also be driven by a field emission device or a low power electron beam.
Abstract:
A matrix-addressed diode flat panel display of field emission type is described, utilizing a diode (two terminal) pixel structure. The flat panel display comprises a cathode assembly having a plurality of cathodes, each cathode including a layer of cathode conductive material and a layer of a low effective work-function material deposited over the cathode conductive material and an anode assembly having a plurality of anodes, each anode including a layer of anode conductive material and a layer of cathodoluminescent material deposited over the anode conductive material, the anode assembly located proximate the cathode assembly to thereby receive charged particle emissions from the cathode assembly, the cathodoluminescent material emitting light in response to the charged particle emissions. The flat panel display further comprises means for selectively varying field emission between the plurality of corresponding light-emitting anodes and field-emission cathodes to thereby effect an addressable grey-scale operation of the flat panel display.
Abstract:
An improved field emission cathode and methods for fabricating such an cathode are disclosed. In the methods of the invention, the field emission cathode is made from at least one body containing a first substance. The method steps include a preparation of irregularities in an emitting surface of the body, adding to the emitting surface of the body ions of a second substance with a low work function, and modifying the emitting surface by inducing field emission in applying a variable electric field to the body and increasing the field strength in steps.
Abstract:
A matrix-addressed diode flat panel display of field emission type is described, utilizing a diode (two terminal) pixel structure. The flat panel display includes a cathode assembly having a plurality of cathodes, each cathode including a layer of cathode conductive material and a layer of a low effective work-function material deposited over the cathode conductive material and an anode assembly having a plurality of anodes, each anode including a layer of anode conductive material and a layer of cathodoluminescent material deposited over the anode conductive material, the anode assembly located proximate the cathode assembly to thereby receive charged particle emissions from the cathode assembly, the cathodoluminescent material emitting light in response to the charged particle emissions. The flat panel display further includes the capability for selectively varying field emission between the plurality of corresponding light-emitting anodes and field-emission cathodes to thereby effect an addressable grey-scale operation of the flat panel display.
Abstract:
In an electron emission device and its method of fabrication, a plurality of holes is smoothly formed within a limited region, and an ohmic layer connected to a signal line is formed using some of the plurality of holes. The electron emission device includes: a substrate; a first electrode arranged on the substrate; a first insulating layer arranged on the first electrode and having a plurality of first holes; an ohmic layer arranged in at least one of the plurality of first holes and electrically connected to the first electrode; a signal line electrically connected to the ohmic layer and adapted to supply a voltage to the first electrode via the ohmic layer; an emitter arranged in the plurality of first holes excluding the at least one hole having the ohmic layer arranged therein and electrically connected to the first electrode; and a second electrode arranged on the first insulating layer and having a plurality of gate holes corresponding to the plurality of first holes excluding the at least one hole having the ohmic layer arranged therein.
Abstract:
A field emission display includes a first substrate (2); a plurality of gate electrodes (6) formed on the first substrate in a predetermined pattern; an insulation layer (8) formed covering the gate electrodes over an entire surface of the first substrate; a plurality of cathode electrodes (10) formed on the insulation layer in a predetermined pattern, a plurality of emitters (12) formed on the cathode electrodes; a plurality of counter electrodes (14) formed on the insulation layer at a predetermined distance from the emitters and in a state of electrical connection to the gate electrodes, the counter electrodes forming an electric field directed toward the emitters; a second substrate (4) provided at a predetermined distance from the first substrate and sealed in a vacuum state with the first substrate; an anode electrode (16) formed on a surface of the second substrate opposing the first substrate; and a plurality of phosphor layers (18) formed over the anode electrode in a predetermined pattern.