Abstract:
A Reflective Field Emission Display system, components and methods for fabricating the components. In the FED system, a plurality of reflective edge emission pixel elements are arranged in a matrix of N rows and M columns, the pixel elements contain an edge emitter that is operable to emit electrons and a reflector that is operable to extract and laterally reflect emitted electrons. A collector layer, laterally disposed from said reflector layer is operable to attract the reflected electrons. Deposited on the collector layer is a phosphor layer that emits a photon of a known wavelength when activated by an attracted electron. A transparent layer that is oppositely positioned with respect to the pixel elements is operable to attract reflected electrons and prevent reflected electrons from striking the phosphor layer. Color displays are further contemplated by incorporating individually controlled sub-pixel elements in each of the pixel elements. The phosphor layers emit photons having wavelengths in the red, green or blue color spectrum.
Abstract:
An electron emitter, such as for a display, has a substrate and regions of n-type material and p-type material on the substrate arranged such that there is an interface junction between the regions exposed directly to vacuum for the liberation of electrons. The p-type region may be a thin layer on top of the n-type region or the two regions may be layers on adjacent parts of the substrate with adjacent edges forming the interface junction. Alternatively, there many be multiple interface junctions formed by p-type particles or by both p-type and n-type particles. The particles may be deposited on the substrate by an ink-jet printing technique. The p-type material is preferably diamond, which may be activated to exhibit negative electron affinity.
Abstract:
A field emission display having element including a first electrode, and a second electrode laminated to the first electrode through an insulating layer. The first electrode has an opening; the second electrode has a hole of a planar shape corresponding to that of the opening at a position matched with the opening; and the insulating layer has a through-hole continuous to the opening and the hole. An upper edge portion of the hole is formed into a cross-sectional shape having an edge angle in a range of 80 to 100°, and at least part of the upper edge portion of the hole is exposed in the through-hole. In this element, electrons are emitted from the second electrode through the upper edge portion of the hole exposed in the through-hole by applying a specific voltage between the first electrode and the second electrode. With this configuration, a distance between the gate electrode and a field emission portion of the cathode electrode can be accurately controlled with a simple structure. To enhance an emission efficiency of electrons, a second gate electrode may be provided on the lower side of the cathode electrode through an insulating layer.
Abstract:
A field emission display having element including a first electrode, and a second electrode laminated to the first electrode through an insulating layer. The first electrode has an opening; the second electrode has a hole of a planar shape corresponding to that of the opening at a position matched with the opening; and the insulating layer has a through-hole continuous to the opening and the hole. An upper edge portion of the hole is formed into a cross-sectional shape having an edge angle in a range of 80 to 100.degree., and at least part of the upper edge portion of the hole is exposed in the through-hole. In this element, electrons are emitted from the second electrode through the upper edge portion of the hole exposed in the through-hole by applying a specific voltage between the first electrode and the second electrode. With this configuration, a distance between the gate electrode and a field emission portion of the cathode electrode can be accurately controlled with a simple structure. To enhance an emission efficiency of electrons, a second gate electrode may be provided on the lower side of the cathode electrode through an insulating layer.
Abstract:
A field emitter cell includes a thin film edge emitter normal to a gate layer. The field emitter is a multilayer structure including a low work function material sandwiched between two protective layers. The field emitter may be fabricated from a composite starting structure including a conductive substrate layer, an insulation layer, a standoff layer and a gate layer, with a perforation extending from the gate layer into the substrate layer. The emitter material is conformally deposited by chemical beam deposition along the sidewalls of the perforation. Alternatively, the starting material may be a conductive substrate having a protrusion thereon. The emitter layer, standoff layer, insulation layer, and gate layer are sequentially deposited, and the unwanted portions of each are preferentially removed to provide the desired structure.
Abstract:
A self-gettering electron field emitter has a first portion formed of a low-work-function material for emitting electrons, and it has an integral second portion that acts both as a low-resistance electrical conductor and as a gettering surface. The self-gettering emitter is formed by disposing a thin film of the low-work-function material parallel to a substrate and by disposing a thin film of the low-resistance gettering material parallel to the substrate and in contact with the thin film of the low-work-function material. The self-gettering emitter is particularly suitable for use in lateral field emission devices. The preferred emitter structure has a tapered edge, with a salient portion of the low-work-function material extending a small distance beyond an edge of the gettering and low resistance material. A fabrication process specially adapted for in situ formation of the self-gettering electron field emitters while fabricating microelectronic field emission devices is also disclosed.
Abstract:
Thin-film edge emission devices and methods for forming are provided. The emitters are formed to have extended edges. They are formed by oblique deposition on a surface of material which extends from a substrate. The material is substantially removed to leave the thin-film emitter. A gate may then be formed around the emitter. Arrays of such thin-film emitters may be used in a variety of electronic devices.
Abstract:
In a method, a film for a gate electrode, exposed through the sidewall of a trench, is thermally treated to grow a thermal oxide film which is, then, removed at the lateral side of the gate electrode, to spatially separate the gate electrode from the gate insulating film in space. This method precisely controls the thermal oxide film formed at the lateral side of the gate electrode, so that the distance between the gate electrode and the electron emission cathode can be accurately adjusted. The electron emission cathodes are homogeneous in shape. Also, the reliability of the display can be improved since a silicide metal is formed on the electron emission cathodes.
Abstract:
A thin-film edge field emitter device includes a substrate having a first rtion and having a protuberance extending from the first portion, the protuberance defining at least one side-wall, the side-wall constituting a second portion. An emitter layer is disposed on the substrate including the second portion, the emitter layer being selected from the group consisting of semiconductors and conductors and is a thin-film including a portion extending beyond the second portion and defining an exposed emitter edge. A pair of supportive layers is disposed on opposite sides of the emitter layer, the pair of supportive layers each being selected from the group consisting of semiconductors and conductors and each having a higher work function than the emitter layer.
Abstract:
A field emission device (10) is made with a lateral emitter (100) substantially parallel to a substrate (20) and with a simplified anode stucture (70). The lateral-emitter field-emission device has a thin-film emitter cathode (100) which has a thickness not exceeding several hundred angstroms and has an emitting blade edge or tip (110) having a small radius of curvature. The anode's top surface is precisely spaced apart from and below the plane of the lateral emitter and receives electrons emitted by field emission from the blade edge or tip of the lateral-emitter cathode, when a suitable bias voltage is applied. A fabrication process is disclosed using process steps (S1-S18) similar to those of semiconductor integrated circuit fabrication to produce the novel devices and their arrays. Various embodiments of the fabrication process allow the use of conductive or insulating substrates (20) and allow fabrication of devices having various functions and complexity. The anode (70) is simply fabricated, without the use of prior-art processes which formed a spacer made by a conformal coating. In a preferred fabrication process for the simplified anode device, the following steps are performed: an anode film (70) is deposited; an insulator film (90) is deposited over the anode film; an ultra-thin conductive emitter film (100) is deposited over the insulator and patterned; a trench opening (160) is etched through the emitter and insulator, stopping at the anode film, thus forming and automatically aligning an emitting edge of the emitter; and means are provided for applying an electrical bias to the emitter and anode, sufficient to cause field emission of electrons from the emitting edge of the emitter to the anode. The anode film may comprise a phosphor (75) for a device specially adapted for use in a field emission display. The fabrication process may also include steps to deposit additional insulator films (130) and to deposit additional conductive films for control electrodes (140), which are automatically aligned with the emitter blade edge or tip (110).