Abstract:
A method of forming surface protrusions on an article, and the article with the protrusions attached. The article may be an Integrated Circuit (IC) chip, a test probe for the IC chip or any suitable substrate or nanostructure. The surface protrusions are electroplated to a template or mold wafer, transferred to the article and easily separated from the template wafer. Thus, the attached protrusions may be, e.g., micro-bumps or micro pillars on an IC chip or substrate, test probes on a probe head, or one or more cantilevered membranes in a micro-machine or micro-sensor or other micro-electro-mechanical systems (MEMS) formed without undercutting the MEMS structure.
Abstract:
A sensing device includes a MEMS sensor and an adjustable amplifier. The MEMS sensor is configured to generate an input signal according to environmental changes. The adjustable amplifier has a first input terminal, a second input terminal, a third input terminal, a fourth input terminal and a first output terminal. The first input terminal is electrically connected to the MEMS sensor for receiving the input signal. The second input terminal is electrically connected to a first signal terminal for receiving a first common-mode signal. The third input terminal is electrically connected to the first output terminal. The fourth input terminal is electrically connected to a second signal terminal. An electric potential of a first output signal output by the first output terminal of the adjustable amplifier is related to electric potentials of the input signal, the first signal terminal and the second signal terminal.
Abstract:
A system and/or method for utilizing mechanical motion limiters to control proof mass amplitude in MEMS devices (e.g., MEMS devices having resonant MEMS structures, for example various implementations of gyroscopes, magnetometers, accelerometers, etc.). As a non-limiting example, amplitude control for a MEMS gyroscope proof mass may be accomplished during normal (e.g., steady state) gyroscope operation utilizing impact stops (e.g., bump stops) of various designs. As another non-limiting example, amplitude control for a MEMS gyroscope proof mass may be accomplished utilizing non-impact limiters (e.g., springs) of various designs, for example springs exhibiting non-linear stiffness characteristics through at least a portion of their normal range of operation.
Abstract:
A low power consumption multi-contact micro electro-mechanical strain/displacement sensor and miniature autonomous self-contained systems for recording of stress and usage history with direct output suitable for fatigue and load spectrum analysis are provided. In aerospace applications the system can assist in prediction of fatigue of a component subject to mechanical stresses as well as in harmonizing maintenance and overhauls intervals. In alternative applications, i.e. civil structures, general machinery, marine and submarine vessels, etc., the system can autonomously record strain history, strain spectrum or maximum values of the strain over a prolonged period of time using an internal power supply or a power supply combined with an energy harvesting device. The sensor is based on MEMS technology and incorporates a micro array of flexible micro or nano-size cantilevers. The system can have extremely low power consumption while maintaining precision and temperature/humidify independence.
Abstract:
A sensor device and an electronic apparatus by which downsizing and a reduction in costs can be achieved is provided. A sensor device according to an embodiment of the present technology includes a sensor element and a semiconductor element. The semiconductor element includes a first surface, a second surface, and a via-hole. The first surface includes a first terminal on which the sensor element is mounted and is an inactive surface. The second surface includes a second terminal for external connection and is an active surface. The via-hole electrically connects the first surface and the second surface to each other.
Abstract:
A semiconductor structure includes: a first device; a second device contacted with the first device, wherein a chamber is formed between the first device and the second device; a first hole disposed in the second device and defined between a first end with a first circumference and a second end with a second circumference; a second hole disposed in the second device and aligned to the first hole; and a sealing object for sealing the second hole. The first end links with the chamber, and the first circumference is different from the second circumference, the second hole is defined between the second end and a third end with a third circumference, and the second circumference and the third circumference are smaller than the first circumference.
Abstract:
A microelectromechanical device comprising a mechanical structure extending along a longitudinal direction, linked to a planar substrate by an anchorage situated at one of its ends and able to flex in a plane parallel to the substrate, the mechanical structure comprises a joining portion, which links it to each anchorage and includes a resistive region exhibiting a first and second zone for injecting an electric current to form a resistive transducer, the resistive region extending in the longitudinal direction from an anchorage and arranged so a flexion of the mechanical structure in the plane parallel to the substrate induces a non-zero average strain in the resistive region and vice versa; wherein: the first injection zone is carried by the anchorage; and the second injection zone is carried by a conducting element not fixed to the substrate and extending in a direction, termed lateral, substantially perpendicular to the longitudinal direction.
Abstract:
A sensor device and an electronic apparatus by which downsizing and a reduction in costs can be achieved is provided. A sensor device according to an embodiment of the present technology includes a sensor element and a semiconductor element. The semiconductor element includes a first surface, a second surface, and a via-hole. The first surface includes a first terminal on which the sensor element is mounted and is an inactive surface. The second surface includes a second terminal for external connection and is an active surface. The via-hole electrically connects the first surface and the second surface to each other.
Abstract:
The disclosure relates to method and apparatus for micro-contact printing of micro-electromechanical systems (“MEMS”) in a solvent-free environment. The disclosed embodiments enable forming a composite membrane over a parylene layer and transferring the composite structure to a receiving structure to form one or more microcavities covered by the composite membrane. The parylene film may have a thickness in the range of about 100 nm-2 microns; 100 nm-1 micron, 200-300 nm, 300-500 nm, 500 nm to 1 micron and 1-30 microns. Next, one or more secondary layers are formed over the parylene to create a composite membrane. The composite membrane may have a thickness of about 100 nm to 700 nm to several microns. The composite membrane's deflection in response to external forces can be measured to provide a contact-less detector. Conversely, the composite membrane may be actuated using an external bias to cause deflection commensurate with the applied bias. Applications of the disclosed embodiments include tunable lasers, microphones, microspeakers, remotely-activated contact-less pressure sensors and the like.
Abstract:
A method of forming surface protrusions on an article, and the article with the protrusions attached. The article may be an Integrated Circuit (IC) chip, a test probe for the IC chip or any suitable substrate or nanostructure. The surface protrusions are electroplated to a template or mold wafer, transferred to the article and easily separated from the template wafer. Thus, the attached protrusions may be, e.g., micro-bumps or micro pillars on an IC chip or substrate, test probes on a probe head, or one or more cantilevered membranes in a micro-machine or micro-sensor or other micro-electro-mechanical systems (MEMS) formed without undercutting the MEMS structure.