Abstract:
Embodiments of the present invention provide a Raman spectroscopic inspection method, comprising the steps of: measuring a Raman spectrum of an object to be inspected successively to collect a plurality of Raman spectroscopic signals; superposing the plurality of Raman spectroscopic signals to form a superposition signal; filtering out a florescence interfering signal from the superposition signal; and identifying the object to be inspected on basis of the superposition signal from which the florescence interfering signal has been filtered out. By means of the above method, a desired Raman spectroscopic signal may be acquired by removing the interference caused by a florescence signal from a Raman spectroscopic inspection signal of the object. It may inspect correctly the characteristics of the Raman spectrum of the object so as to identify the object effectively.
Abstract:
A colorimeter with multiple sensings of light to provide higher accuracy measurements of the primaries of a human-standard observer based color space is provided. This color space (target color space) must have the characteristic of two chromaticity coordinates and an achromatic primary like CIELAB, CIELUV or xyY in CIE 1931. The calibration of the device includes training with a set of calibration illuminants. Two sets of calibration-factors are determined. The first set of calibration factors yields intensity of primaries optimized with respect to chromaticity, the second set yields the optimized intensity of the achromatic primary. The combination of these sets of calibration factors enable the colorimeter to deliver values of that light with respect to three primaries of a human-standard-observer-based color space optimized with respect to chromaticity and the achromatic primary.
Abstract:
A multi-channel infrared spectrometer for detecting an infrared spectrum of light received from an object. The spectrometer comprises a wavelength converter system comprising a nonlinear material and having an input side and an output side. The wavelength converter system comprises at least a first up-conversion channel and a second up-conversion channel, and is arranged such that light traversing the wavelength converter system at different angles in the nonlinear material is imaged into different positions in an image plane. The first up- conversion channel is configurable for phase-matching infrared light in a first input wavelength range incident on the first side and light in a first output wavelength range output on the second side, and correspondingly, the second up-conversion channel is configurable for phase-matching infrared light in a second input wavelength range incident on the first side into light in a second output wavelength range output on the second side. The spectrometer further comprises a demultiplexer configured for demultiplexing light in the first up-conversion channel and light in the second up-conversion channel. The demultiplexer is located on the first side or the second side of the wavelength converter system. Finally, the spectrometer comprises a spatially resolved detector arranged in the image plane to detect light in the first output wavelength range and second output wavelength range output of the wavelength converter system.
Abstract:
The present disclosure relates to a method and apparatus for testing materials. More particularly, but not exclusively, this invention concerns a method and apparatus for testing materials using infrared spectrometry. The invention also concerns the calibration of an infrared spectrometer for use in testing materials using infrared spectrometry. The invention provides a method of calibrating an infrared spectrometer for testing composites in the aerospace industry, comprising the steps of, selecting a plurality of variables which have the potential to influence the physical characteristics of a composite used in the aerospace industry, selecting a plurality of values for each variable and inputting the variable and values into a design of experiments model, thereby obtaining a sample test matrix.
Abstract:
A lighting device 10 that emits illumination light from two or more angular directions onto a sample surface 2 to be measured, an imaging optical lens 8, and a monochrome two-dimensional image sensor 4 are provided. This configuration provides a method and an apparatus that take a two-dimensional image of the sample surface 2 to be measured at each measurement wavelength and accurately measure multi-angle and spectral information on each of all pixels in the two-dimensional image in a short time. In particular, a multi-angle spectral imaging measurement method and apparatus that have improved accuracy and usefulness are provided.
Abstract:
Apparatus for illuminating the surface of a material, comprising an illuminating device (101) for illuminating the surface of the material (103) with a calibrating light (105), a recording device (107) for recording a measuring light (109), emitted by the surface of the material (103) in response to the calibrating light (105), and a processor device (111) for recording the spectral characteristic of the measuring light (109) that characterizes a diffuse spectral reflectance of the surface of the material (103), wherein the illuminating device (101) is designed to produce an illuminating light (113) for illuminating the surface of the material (103) that has a spectral characteristic that corresponds to the spectral characteristic of the measuring light (109).
Abstract:
A method and apparatus for producing with a gas discharge laser an output laser beam comprising output laser light pulses, for delivery as a light source to a utilizing tool is disclosed which may comprise a beam path and a beam homogenizer in the beam path. The beam homogenizer may comprise at least one beam image inverter or spatial rotator, which may comprise a spatial coherency cell position shifter. The homogenizer may comprise a delay path which is longer than, but approximately the same delay as the temporal coherence length of the source beam. The homogenizer may comprise a pair of conjoined dove prisms having a partially reflective coating at the conjoined surfaces of each, a right triangle prism comprising a hypotenuse face facing the source beam and fully reflective adjoining side faces or an isosceles triangle prism having a face facing the source beam and fully reflective adjoining side faces or combinations of these, which may serve as a source beam multiple alternating inverted image creating mechanism. The beam path may be part of a bandwidth measuring the bandwidths of an output laser beam comprising output laser light in the range of below 500 femtometers at accuracies within tens of femtometers. The homogenizer may comprise a rotating diffuser which may be a ground glass diffuser which may also be etched. The wavemeter may also comprise a collimator in the beam path collimating the diffused light; a confocal etalon creating an output based upon the collimated light entering the confocal etalon; and a detector detecting the output of the confocal etalon and may also comprise a scanning mechanism scanning the angle of incidence of the collimated light entering the confocal etalon which may scan the collimated light across the confocal etalon or scan the etalon across the collimated light, and may comprise an acousto-optical scanner. The confocal etalon may have a free spectral range approximately equal to the E95 width of the beam being measured. The detector may comprise a photomultiplier detecting an intensity pattern of the output of the confocal etalon.
Abstract:
Validation verification data quantifying an intensity of light reaching a detector of a spectrometer from a light source of the spectrometer after the light passes through a validation gas across a known path length can be collected or received. The validation gas can include an amount of an analyte compound and an undisturbed background composition that is representative of a sample gas background composition of a sample gas to be analyzed using a spectrometer. The sample gas background composition can include one or more background components. The validation verification data can be compared with stored calibration data for the spectrometer to calculate a concentration adjustment factor, and sample measurement data collected with the spectrometer can be modified using this adjustment factor to compensate for collisional broadening of a spectral peak of the analyte compound by the background components. Related methods, articles of manufacture, systems, and the like are described.
Abstract:
A shutter assembly for use with a spectrometer having at least one source of optical radiation such as at least one laser capable of generating an excitation light beam having an illumination path. The shutter assembly includes a shutter having at least one of (i) at least one calibration material capable of generating a consistent spectrum within wavelengths utilizable by the spectrometer and (ii) a mirror capable of diverting at least one of the illumination path and a collection path relative to a calibration standard capable of generating a consistent spectrum within wavelengths utilizable by the spectrometer. The shutter assembly further includes a mechanism capable of moving the shutter into at least a first position in the path of the light beam and a second position out of the path of the light beam to enable a sample to be analyzed.