Abstract:
Spectroscopy apparatuses oriented to the critical angle of the sample are described that detecting the spectral characteristics of a sample wherein the apparatus consists of an electromagnetic radiation source adapted to excite a sample with electromagnetic radiation introduced to the sample at a location at an angle of incidence at or near a critical angle of the sample; a transmitting crystal in communication with the electromagnetic radiation source and the sample, the transmitting crystal having a high refractive index adapted to reflect the electromagnetic radiation internally; a reflector adapted to introduce the electromagnetic radiation to the sample at or near an angle of incidence near the critical angle between the transmitting crystal and sample; and a detector for detecting the electromagnetic radiation from the sample. Also, provided herein are methods, systems, and kits incorporating the peri-critical reflection spectroscopy apparatus.
Abstract:
A cartridge and cartridge system for use in an apparatus for analyzing a sample are provided. The system has a plurality of cartridges for different applications for a multimode instrument. The cartridges are removably engaged with a cartridge support of the apparatus in a “plug-in” format such that one cartridge may be removed from the apparatus and another cartridge may be easily installed. The cartridge support includes a plurality of cartridge positions that receive cartridges concurrently. One of the cartridges may be a luminescence cartridge that includes an integrated detector that is movable toward and away from a sample carrier of the apparatus, and thus toward and away from a sample located at the sample carrier.
Abstract:
Described are methods for multi-wavelength cavity ring-down spectroscopy; comprising simultaneously and continuously irradiating an optical cavity with light at two or more different wavelengths, each light being intensity-modulated at a different modulation frequency, detecting the light of two or more wavelengths after the light has traveled through the optical cavity; measuring an optical loss of each detected light; and determining a characteristic of the optical cavity from the optical loss of each detected light. Also described are apparatus and systems for multi-wavelength cavity ring-down spectroscopy.
Abstract:
An apparatus for analyzing, identifying or imaging an target including first and second laser beams coupled to a pair of photoconductive switches to produce CW signals in one or more bands in a range of frequencies greater than 100 GHz focused on and transmitted through or reflected from the target; and a detector for acquiring spectral information from signals received from the target and using a multi-spectral heterodyne process to generate an electrical signal representative of some characteristics of the target. The lasers are tuned to different frequencies and a frequency shifter in the path of one laser beam allows the terahertz beam to be finely adjusted in one or more selected frequency bands.
Abstract:
A cartridge and cartridge system for use in an apparatus for analyzing a sample are provided. The system has a plurality of cartridges for different applications for a multimode instrument. The cartridges are removably engaged with a cartridge support in a “plug-in” format such that one cartridge may be removed from the apparatus and another cartridge may be easily installed. The cartridge support includes a plurality of cartridge positions that receive cartridges concurrently. One of the cartridges is a wavelength-tunable cartridge in which different light sources, excitation filters, and/or emission filters may be selected. Tuning is further accomplished by tilting the excitation or emission filters at desired angles relative to a beam of exciting light or emitted light.
Abstract:
A system and process are disclosed that provide high accuracy and high precision destructive analysis measurements for isotope ratio determination of relative isotope abundance distributions in liquids, solids, and particulate samples. The invention utilizes a collinear probe beam to interrogate a laser ablated plume. This invention provides enhanced single-shot detection sensitivity approaching the femtogram range, and isotope ratios that can be determined at approximately 1% or better precision and accuracy (relative standard deviation).
Abstract:
An apparatus, system, and method are disclosed for nonlinear optical surface sensing with a single thermo-electric detector. In particular, the system includes at least two signal sources that are co-aligned to propagate photons to the same location on a surface. The system also includes at least one focusing element that focuses a sequence of photons that is reflected from the location on the surface. In addition, the system includes at least one frequency selective electromagnetic detector that detects the sequence of photons that are focused from the focusing element(s). When the frequency selective electromagnetic detector senses a photon, the frequency selective electromagnetic detector emits an electrical pulse that has a voltage that is proportional to the energy level of the photon. Additionally, the system includes a processor that processes the electrical pulses, and de-multiplexes the sequence of emitted electrical pulses based on the electrical pulse voltage of the electrical pulses.
Abstract:
Apparatus and method to measure optical absorption spectra with spatial resolution on the micron scale. An exemplary setup combines a continuous white light excitation beam in transmission geometry with a confocal microscope. Spatial resolution better than 1.4 μm in the lateral and 3.6 μm in the axial, directions was obtained. The detection and measurement of the absorption spectrum of hemoglobin in a single red blood cell under physiological conditions on the timescale of seconds was realized. The apparatus and method enables the investigation of spatial variations in the optical density of small samples on the micron scale and the study of biological assemblies at the single cell level, leading to applications in optical diagnostics, microfluidics, and other areas.
Abstract:
An arrangement adapted for a spectral analysis, having a light transmitting means, a delimited space in the form of a cavity serving as a measuring cell and defining an optical measuring distance, a light sensing means for detecting radiation passing said optical measuring distance from said light transmitting means, and a unit, connected at least to said light sensing means and performing the spectral analysis. Beams of radiation from the light transmitting means are made to pass through an optical band-pass filter at different angles of incidence. The filter is structured so as to pass a wavelength in dependence of the angle of incidence. A first chosen wavelength component is separated from a second wavelength component, each being received in its opto-electric means. Said unit is adapted for detecting and calculating an occurring radiation intensity for each such wavelength component.
Abstract:
A plant sensor includes a light source section having first and second light emitters configured to irradiate first and second measuring light toward an object to be measured, respectively, and a light receiver configured to receive reflected light from the object to be measured, and output light-receiving signals. A controller is configured to control emission of the first and second light emitters at a different timing, an integrator is configured to integrate the light-receiving signals, and output an integration signal, and a calculator is configured to calculate, according to the integration signal, a reflection rate as a ratio of light intensity of the reflected light of the first measuring light from the object to be measured to light intensity of the first measuring light, a reflection rate as a ratio of light intensity of the reflected light of the second measuring light from the object to be measured to light intensity of the second measuring light, and to obtain information regarding a growing condition of the object to be measured.