Abstract:
A macroscopic fluorescence illumination assembly is provided for use with an imaging apparatus with a light-tight imaging compartment. The imaging apparatus includes an interior wall defining a view port extending into the imaging compartment to enable viewing of a specimen contained therein. The illumination assembly includes a specimen support surface sized and dimensioned for receipt in the imaging compartment, and oriented to face toward the view port of the imaging apparatus. The support surface is substantially opaque and defines a window portion that enables the passage of light there through. The window portion is selectively sized and dimensioned such that the specimen, when supported atop the support surface, can be positioned and seated over the window portion in a manner forming a light-tight seal substantially there between. The illumination assembly further includes an excitation light source, and a bundle of fiber optic strands having proximal ends thereof in optical communication with the light source. The distal ends of the strands terminate proximate the window portion of the support surface. The distal ends each emit a respective beam of light originating from the light source which are then collectively directed toward the window portion and into a bottom side of the specimen wherein the diffused light passes there through and exits a topside thereof for receipt through the view port to view the fluorescence of the specimen.
Abstract:
A method and apparatus is provided for determining a property of an analyte using a sensing layer whose optical response changes with the analyte. The apparatus includes a housing with an optically transparent window for receiving the sensing layer. The window passes optical stimulation to the sensing layer and the optical response from the sensing layer. A stimulating light emitter is coupled to a first face of an optical body monolithically coupled to the window and a light detector is coupled to a second face of the optical body for receiving the response. The optical response changes as the concentration of the analyte changes. Reference molecules included in the sensing layer can provide a calibration signal to a second light detector mounted on a third face of the optical body. The first, second and third faces of the optical body are different and not coplanar.
Abstract:
The invention relates to the field of real-time detection of chemical contamination of water in harsh environmental conditions by using laser remote sensing apparatus for detection of oil or oil products. In-time detection and localization of oil pollution in seawater are the measures to minimize potential damages to the marine and coastal environment. The object of the present invention is to provide a technical solution for remote detection and classification of chemical pollution in water, to optimize operational parameters, weight, size and power consumption of such device, to make possible continuous unattended operation of such device on board of a moving or stationary platform and to provide data processing and reporting the results through communication channels. The LIDAR is designed inside the hermetical internal housing (6) filled with N 2 at overpressure. The internal housing is located inside the external housing (1). For remote oil detection with variable Pulse Repetition Rate of the laser emitter calculated by LIDAR microcontroller (9) based on GPS data to provide pre-set constant spatial resolution in underway measurements. For remote oil detection in iced water distinguishing the iced water conditions by exceptional reflection of ambient and excitation light from the ice pieces in water.
Abstract:
A SERS unit 1A comprises a substrate 4; an optical function part 10 formed on the substrate 4, for generating surface-enhanced Raman scattering; and a package 20A containing the optical function part in an inert space S and configured to irreversibly expose the space S.
Abstract:
A well-logging tool may include a sonde housing and a radiation generator carried by the sonde housing. The radiation generator may include a generator housing, a target carried by the generator housing, a charged particle source carried by the generator housing to direct charged particles at the target, and at least one voltage source coupled to the charged particle source. The at least one voltage source may include a voltage ladder comprising a plurality of voltage multiplication stages coupled in a uni-polar configuration, and at least one loading coil coupled at at least one intermediate position along the voltage ladder. The well-logging tool may further include at least one radiation detector carried by the sonde housing.
Abstract:
The invention provides an apparatus and a method that reduces fluid loss from a cask during a maturation process by sealably enclosing the cask in a vessel that provides an expansion volume to receive fluid vapor from the cask, a monitoring system and a method that monitors fluid loss from a cask during a maturation process using a light source and a detector to determine the presence of fluid vapor in the vicinity of the cask, a corresponding system for controlling a maturation process in which environmental conditions are controlled, and a cask leak testing system and method making use of the above.
Abstract:
First, monochromatic near infrared light in a wavelength range of 700nm - 1100nm from the slit of the near infrared apparatus (1) is applied to a reference ceramic plate through the optical fiber (7) to measure a transmitted light intensity of the ceramic plate which is a reference material for spectrum measurement. Next, in place of the ceramic plate, the test tube (4) containing a liquid sample of which the temperature has been adjusted at a predetermined temperature by a water bath and the like is inserted into the housing portion (5). The transmitted light intensity of the liquid sample is then measured using the same procedure as above. A so-called near infrared absorption spectrum in which absorbance has been plotted against wavelengths is displayed on the screen of the computer (2). Information about each object characteristic is extracted from the spectrum data using a calibration equation.
Abstract:
A system and method for leak testing a plurality of hermetic electronic devices of the type that have an internai chamber that is isolated from ambient conditions by a seal structure is advantageously designed to be able to calculate the leak rate of each individual device in a marner that is independent of structural manufacturing variances that typically exist within a sampling of such devices. The method preferably involves positioning a plurality of the hermetic electronic devices within a test area, and then stimulating the hermetic electronic devices with a modulated input of energy, such as by varying the ambient pressure about the devices. A property such as the physical position of one portion of a lid of each of the hermetic electronic devices is then sensed. The sensed property is one that is known to change as a first function of the modulated input of energy and also as a second function of pressure conditions within the hermetically sealed internal chamber. The first and second functions are linearly independent of each other. By comparing the stimulation of the devices to the sensed property and by discriminating using the two known functions a leak rate is determined for each individual device that is substantially independent of variances, such as differences in lid thickness that may exist between the different devices. Accordingly, an accurate determination of leak rate may be made with a minimum of calibration.
Abstract:
A non-dispersive infrared (NDIR) multi-gas analyzer (405) has an optical element (950) that is positioned with respect to the axis of incident IR radiation such that it passes nearly all of the IR energy within a narrow band pass to one detector (540) and reflects nearly all of the IR energy outside the narrow band pass to another detector (535). Thus, the optical element (950) simultaneously functions both as a narrow band pass filter and a beam splitter, which transmits nearly all the IR radiation within a band pass and reflects nearly all the IR radiation outside the band pass. Additionally, the separation of the incoming energy can be achieved without an extended roll off. This allows using a reference transmission band that is very close to the absorption band of the gases of interest. It more specifically allows using a reference transmission band that is located between the absorption bands for hydrocarbons and carbon dioxide in an infrared analyzer that uses beam splitters.