Abstract:
An aquatic environment water parameter testing system and related methods and chemical indicator elements. The aquatic environment water parameter testing system includes an electronics portion having an optical reader element and a sample chamber portion having a chemical indicator element which may be removably connected. A chemical indicator element may include an information storage and communication element used, in part, to provide identification of a chemical indicator of the chemical indicator element. Conductivity and/or temperature may be utilized to calibrate readings by the optical reader element. A chemical indicator element may also include a thin film material having particular optical characteristics tied to the light from a light source, such as a light source of an optical reader element.
Abstract:
A computer-implemented method for determining a water treatment parameter includes receiving, by a computer, measurements of a fluorescence emission spectrum of a water sample including a first peak emission wavelength and at least a second peak emission wavelength, emitted in response to an excitation wavelength, receiving, by the computer, an absorbance measurement obtained at the excitation wavelength of the water sample, determining, using the computer, a ratio of the measurements at either the second peak emission wavelength, or a sum of measurements at a plurality of peak emission wavelengths including at least the first peak emission wavelength and the second peak emission wavelength, to the first peak emission wavelength, and calculating, using the computer, a value for the water treatment parameter based on a combination of at least the ratio and the absorbance measurement.
Abstract:
An optical sensor device which measures in a spatially resolving manner is disclosed. In order to devise such a sensor device with which a contacting measurement of the article to be measured can be carried out and which can be mass-produced, the sensor device is designed such that a transfer of the calibration onto individual sensor devices is possible with high accuracy. According to certain embodiments of the design of the sensor device and of the evaluation methods, interferences with the measurement of the amount of the target substance are minimized
Abstract:
Validation verification data quantifying an intensity of light reaching a detector of a spectrometer from a light source of the spectrometer after the light passes through a validation gas across a known path length can be collected or received. The validation gas can include an amount of an analyte compound and an undisturbed background composition that is representative of a sample gas background composition of a sample gas to be analyzed using a spectrometer. The sample gas background composition can include one or more background components. The validation verification data can be compared with stored calibration data for the spectrometer to calculate a concentration adjustment factor, and sample measurement data collected with the spectrometer can be modified using this adjustment factor to compensate for collisional broadening of a spectral peak of the analyte compound by the background components. Related methods, articles of manufacture, systems, and the like are described.
Abstract:
The present invention relates to a method for controlling a spectrometer for analyzing a product, the spectrometer including a light source including several light-emitting diodes having respective emission spectra covering in combination an analysis wavelength band, the method including steps of: supplying at least one of the light-emitting diodes with a supply current to switch it on, measuring a light intensity emitted by the light source by measuring a current at a terminal of at least another of the light-emitting diodes maintained off, determining, according to each light intensity measurement, a setpoint value of the supply current of each diode that is on, and regulating the supply current of each diode that is on so that it corresponds to the setpoint value.
Abstract:
A method and a device for analyzing a structure by tomography and diffuse acousto-elastic field correlation are provided. An optical fiber comprising a plurality of measurement points of FBG (Fiber Bragg Grating) type, comprising sensors of Bragg grating type, is deployed in or on the structure to be analyzed. The method comprises the emission of light, into the optical fiber, and the measurement by correlation for each pair of FBG sensors. In a development, a prior imaging of the structure is performed by reconstruction of the velocities of propagation. Other developments comprise: the determination of the positions of the FBG sensors, the calibration of the tomography, the rosette configuration of the sensors forming the measurement points, the use of a plurality of optical fibers, of multiplexers, of lasers, of optical circulators, of omnidirectional optical sensors, of active noise sources, such as piezoelectric transducers, incorporated or not in the structure.
Abstract:
A device for optical detection of analytes in a sample includes at least two optoelectronic components. The optoelectronic components include at least one optical detector configured to receive a photon and at least one optical emitter configured to emit a photon. The at least one optical emitter includes at least three optical emitters disposed in a flat, non-linear arrangement, and the at least one optical detector includes at least three optical detectors disposed in a flat, non-linear arrangement. The at least three optical emitters and the at least three optical detectors include at least three different wavelength characteristics.
Abstract:
An optical instrument is provided for simultaneously illuminating two or more spaced-apart reaction regions with an excitation beam generated by a light source. A collimating lens can be disposed along a beam path between the light source and the reaction regions to form bundles of collimated excitation beams, wherein each bundle corresponds to a respective reaction region. Methods of analysis using the optical instrument are also provided.
Abstract:
A concentration determination apparatus may determine a concentration of a target component in an arbitrary layer of an observed object including a plurality of light scattering medium layers. The concentration determination apparatus may include an irradiation unit, light scattering medium layer selection unit, a light receiving unit, a light intensity acquisition unit, an optical absorption coefficient calculation unit, and a concentration calculation unit.
Abstract:
Quantitative colorimetric carbon dioxide detection and measurement systems are disclosed. The systems can include a gas conduit, a colorimetric indicator adapted to exhibit a color change in response to exposure to carbon dioxide gas, a temperature controller operatively coupled to the colorimetric indicator and configured to control the temperature of the colorimetric indicator, an electro-optical sensor assembly including a light source or sources adapted to transmit light to the colorimetric indicator, and a photodiode or photodiodes configured to detect light reflected from the colorimetric indicator and to generate a measurement signal, and a processor in communication with the electro-optical sensor assembly. The processor can be configured to receive the measurement signal generated by the electro-optical sensor assembly and to compute a concentration of carbon dioxide based on the measurement signal. Methods for using the systems are also disclosed including providing a breathing therapy to a patient or user.