Abstract:
A microfilter comprising a polymer layer formed from epoxy-based photo-definable dry film, and a plurality of apertures each extending through the polymer layer. A microfilter comprising two or more polymer layers formed from epoxy-based photo-definable dry film, and a plurality of apertures or open areas each extending through the polymer layer. A method of forming a microfilter is also disclosed. The method includes providing a first layer of epoxy-based photo-definable dry film disposed on a substrate, exposing the first layer to energy through a mask to form a pattern, defined by the mask, in the first layer of dry film, forming, from the exposed first layer of dry film, a polymer layer having a plurality of apertures extending therethrough, the plurality of apertures having a distribution defined by the pattern, and removing the polymer layer from the substrate. Unique filter holder designs and methods appropriate to hold microfilters to collect the rare cells and allow performing assays in the filter holder are provided. The invention also describes the use of the microfilter and filter holder to collect rare cells from body fluids and perform assays. Rare cells collected on the microfilter in accordance with embodiments of the present invention can be used for medical and biological research applications.
Abstract:
A grid (30), for use with electromagnetic energy emitting devices, includes at least metal layer, which is formed, for example, by electroplating. The metal layer includes top and bottom surfaces, and a plurality of solid integrated walls (32). Each of the solid integrated walls extends from the top to bottom surface and having a plurality of side surfaces. The side surfaces of the solid integrated walls (32), are arranged to define a plurality of openings extending entirely through the layer. At least some of the walls also can include projections extending into the respective openings formed by the walls. The projections can be of various shapes and sizes, and are arranged so that a total amount of wall material intersected by a line propagating in a direction along an edge of the grid is substantially the same as another total amount of wall material intersected by another line propagating in another direction substantially parallel to the edge of the grid at any distance from the edge.
Abstract:
Disclosed are methods for making large area antiscatter grids consisting of focussed and unfocussed holes in sheets of metal. The grid consists of thin metal walls (30) surrounding hollow openings (31). The projections of all walls converge to a focal spot in the focussed grid, and are parallel in an unfocussed grid. A grid having a large area is made by interlocking together smaller grid pieces. A tall device is made by stacking layers of focussed grids. The openings of the grid can be filled with phosphor or other scintillating material (33) to make an integrated grid/scintillator structure.
Abstract:
Circulating tumor cells (CTCs) are associated with metastasis of malignant solid tumors in a patient. Presented here is evidence that CTCs exhibit cell cycle phase variability and that there is a strong correlation between the number of CTCs in a mitotic cell cycle phase and the prospects for long term survival of the subject from which the cells were obtained. Also presented herein are methods of determining the mitotic cell cycle phase of CTCs from a patient having cancer and using the information in grading malignant solid tumors and predicting the likelihood of survival of the patient.
Abstract:
A new sensitive cell biomarker of solid tumors and viral infection is identified in blood. This biomarker can be used to determine presence of carcinomas, sarcomas, and viruses, rapid determination of treatment response, early detection of cancer, early detection of cancer recurrence, and may be used to determine therapy.
Abstract:
Grids (30) and collimators, for use with electromagnetic energy emitting devices (61), include at least a metal layer that is formed, for example, by electroplating/electroforming or casting. The metal layer includes top and bottom surfaces, and a plurality of solid integrated walls (32). Each of the solid integrated walls extends from the top to bottom surface and has a plurality of side surfaces. The side surfaces of the solid integrated walls are arranged to define a plurality of openings (31) extending entirely through the layer. At least some of the walls (32) also can include projections extending into the respective openings formed by the walls (32). The projections can be of various shapes and sizes, and are arranged so that a total amount of wall material intersected by a line propagating in a direction along an edge of the grid (30) is substantially the same as another total amount of wall material intersected by another line propagating in another direction substantially parallel to the edge of the grid (30) at any distance from the edge. Methods to fabricate these grids (30) using copper, lead, nickel, gold, any other electroplating/electroforming materials or low melting temperature metals are described.