Abstract:
An aircraft hybrid fuel system includes a main tank and a set of flexible bladders, the main tank and the set of flexible bladders defining a fuel containment space. The system further includes a set of pathways coupling the set of flexible bladders to the main tank. The set of pathways is constructed and arranged to vent gas out of the set of flexible bladders into the main tank while fuel from a fuel source is provided into the fuel containment space defined by the main tank and the set of flexible bladders. Along these lines, each flexible bladder can be provisioned with a fuel port to provide fuel, and a separate vent port to vent gas to the main tank.
Abstract:
The invention relates to an aircraft (1), preferably an unmanned aircraft (UAV), drone, or Unmanned Aerial System (UAS), comprising a rigid wing (2) which enables aerodynamic horizontal flight, and at least four rotors (4, 4′) which are driven by means of controllable electric motors (5) and which can be pivoted between a vertical starting position and a horizontal flight position by means of a pivoting mechanism (7), wherein all electric motors (5) and rotors (4) are arranged on the wing (2).
Abstract:
A method of extending the operation of an unmanned aerial vehicle (UAV) is disclosed. The method comprises detecting that an energy storage device on board the UAV is depleted below a threshold level, landing the UAV at a base station, and initiating operation of the base station to cause a replacement mechanism thereof to remove the energy storage device on board the UAV from the UAV and to replace this with another energy storage device.
Abstract:
An unmanned vehicle is provided. The unmanned vehicle includes a navigation system configured to navigate the unmanned vehicle relative to a beam of energy emitted from a beam source, a power receiver configured to receive energy from the beam, and an energy storage system configured to store received energy for use in selectively powering the unmanned vehicle.
Abstract:
PURPOSE: A ground power supply system for a small aerial unmanned robot is provided to supply power for the operation of a camera operation, a communication relay station operation, and a lighting device by hovering a small aerial unmanned robot for a long time. CONSTITUTION: A ground power supply system for a small aerial unmanned robot comprises a ground power supply device. The ground power supply device comprises a cable(9), a winder(11), a fixing device(10), a fixing support(12), a plug(13), and a power connection wire(14). The thickness of the cable depends on the size or use of a body of a small aerial unmanned robot. The cable is formed by a flexible material. The winder winds and unwinds the cable. The fixing device fixes the cable on the winder. The fixing support fixes and tows the small aerial unmanned robot. The plug receives AC or DC power from the outside. The power connection wire supplies the AC or DC power to a cable terminal of the winder to supply the power to the small aerial unmanned robot through the cable.
Abstract:
An unmanned aerial system (UAS) may comprise an unmanned aerial vehicle (UAV) configured to search and recover persons and things, collect and produce data of an emergency situation for display on a vehicle navigation system, or explore for natural resources. The UAS may include a landing pad, and/or a sensor such as a ground penetrating sensor configured to search for a person trapped underground. The UAS may be configured to receive data from the one or more sensors. An analyzer may be used to assess surrounding environment and the status of the person or thing, and send a signal to the UAV. The components attached to the UAV may include connectors, a robotic arm, a sensor, and/or a portable power source. The UAS may be configured to, for example, detect an emergency situation and determine the nature and location of the emergency situation. The UAS may be configured to explore for oil, gas, and mineral sources, and/or excavate location using a robotic arm.
Abstract:
L'invention concerne un système d'alimentation électrique d'un appareil téléopéré captif (10), comportant une source d'alimentation électrique (21) configurée pour fournir une énergie électrique, et un câble électrique (20) connecté électriquement à ladite source d'alimentation électrique et configuré pour acheminer ladite énergie électrique jusqu'au dit appareil téléopéré captif pour alimenter au moins une machine électrique tournante et/ou des éléments systémiques embarqués dans ledit appareil téléopéré captif; caractérisé en ce que ladite source d'alimentation électrique est configurée pour fournir une haute tension alternative triphasée, ledit câble électrique est configuré pour faire cheminer ladite haute tension alternative triphasée et ledit système comporte en outre un dispositif de gestion et de conversion d'énergie embarqué dans ledit appareil téléopéré captif et configuré pour redresser ladite haute tension alternative triphasée reçue en une haute tension continue et pour abaisser ladite haute tension continue en basse tension continue
Abstract:
An unmanned aerial system (UAS) may comprise an unmanned aerial vehicle (UAV) configured to display advertising. The UAV may include a connector configured to attach to a display screen. The display screen may be configured to receive data from the UAV and display a message based on the data. The UAS may be controlled by a remote control, which may command the UAV to display a specific message. The remote control may control the flight of the UAV as well as the functionality of the one or more components. The components attached to the UAV, may include a camera, a robotic arm, or a display screen. The UAS may be configured to, for example, display advertising messages in a predetermined area, display advertising messages in response to the UAV determining a specific event or recognizing a specific person, and/or launch fireworks.