Method and device for launching aerial vehicles
    141.
    发明授权
    Method and device for launching aerial vehicles 有权
    发射飞行器的方法和装置

    公开(公告)号:US07530527B2

    公开(公告)日:2009-05-12

    申请号:US10558312

    申请日:2004-05-20

    Abstract: A heavier-than-air air vehicle, particularly a long endurance, solar powered, unmanned aerial vehicle (UAV) intended for “perpetual” flight within the stratosphere, is carried to its operational altitude suspended on a tether from a helium balloon. The tether is attached at or towards a tip of the UAV's wing so that it is carried in effectively a 90° banked attitude. At the desired altitude the UAV's powerplant is started and it flies on its tether in an upwardly-spiralling path relative to the balloon until a level or near level attitude is attained, when the tether is released and the UAV is permitted to assume free flight.

    Abstract translation: 一架重型空中飞行器,特别是用于在平流层内“永久”飞行的长寿命的太阳能无人驾驶飞行器(UAV)被运载到悬挂在氦球系绳上的作战高度。 系绳连接在无人机翼的顶端或朝向无人机翼的尖端,以便有效地承载90度的坦克姿态。 在所需的高度,UAV的动力装置启动,并且相对于气球以相对于气囊的向上螺旋方式飞行,直到达到水平或接近水平的姿态时,系绳被释放并且UAV被允许进行自由飞行。

    Miniature expendable surveillance balloon system
    142.
    发明授权
    Miniature expendable surveillance balloon system 失效
    微型消耗性监视气球系统

    公开(公告)号:US07341224B1

    公开(公告)日:2008-03-11

    申请号:US11251511

    申请日:2005-10-14

    Abstract: A miniature surveillance balloon system is described that can be used in military and public safety situations for real-time observations. They are as small as feasibly possible, low-cost and expendable, and typically are deployed in clusters. Balloons may act individually or alternately clusters may act robotically (in unison) without command input at times. Video surveillance information is preprocessed and then sent via wireless communications links. Batteries and/or gas cylinders may be selectively jettisoned to facilitate vertical movement. Balloons may optionally have thruster mechanisms to facilitate lateral movement which may in some embodiments be powered by a source of combustible gas which is also used for providing lift.

    Abstract translation: 描述了可用于军事和公共安全情况下的实时观察的微型监视气球系统。 它们尽可能小,可行,低成本和消耗性,通常部署在群集中。 气球可以单独地或者交替地组合,有时可以机械地(一致地)执行命令输入。 视频监控信息经过预处理,然后通过无线通信链路发送。 可以选择性地放电电池和/或气瓶以便于垂直运动。 气球可以可选地具有促进侧向运动的推进器机构,其在一些实施例中可由可用于提供升力的可燃气体源提供动力。

    Airship and method of operation
    144.
    发明授权
    Airship and method of operation 失效
    飞艇及作战方法

    公开(公告)号:US06966523B2

    公开(公告)日:2005-11-22

    申请号:US10718634

    申请日:2003-11-24

    Inventor: Hokan S. Colting

    Abstract: An airship has a generally spherical shape and has an internal envelope for containing a lifting gas such as Helium or Hydrogen. The airship has a propulsion and control system that permits it to be flown to a desired loitering location, and to be maintained in that location for a period of time. In one embodiment the airship may achieve neutral buoyancy when the internal envelope is as little as 7% full of lifting gas, and may have a service ceiling of about 60,000 ft. The airship has an equipment module that can include either communications equipment, or monitoring equipment, or both. The airship can be remotely controlled from a ground station. The airship has a solar cell array and electric motors of the propulsion and control system are driven by power obtained from the array. The airship also has an auxiliary power unit that can be used to drive the electric motors. The airship can have a pusher propeller that assists in driving the airship and also moves the point of flow separation of the spherical airship further aft. In one embodiment the airship can be refuelled at altitude to permit extended loitering.

    Abstract translation: 飞艇具有大致球形并且具有用于容纳诸如氦气或氢气的提升气体的内部信封。 飞艇有一个推进和控制系统,允许飞行到所需的游荡地点,并在该地点保持一段时间。 在一个实施例中,当内部信封充满提升气体的时间少至7%时,飞艇可以达到中性浮力,并且可以具有大约6万英尺的服务天花板。飞艇具有可以包括通信设备或监视的设备模块 设备,或两者兼而有之。 飞艇可以从地面站遥控。 飞艇具有太阳能电池阵列,推进和控制系统的电动机由阵列获得的功率驱动。 飞艇还具有可用于驱动电动机的辅助动力单元。 飞艇可以有一个推动螺旋桨,有助于驾驶飞艇,还可以使球形飞艇进一步向后流动的距离。 在一个实施例中,飞艇可以在高度加油以允许延长的游荡。

    AIRSHIP AND METHOD OF OPERATION
    146.
    发明申请
    AIRSHIP AND METHOD OF OPERATION 失效
    航空和操作方法

    公开(公告)号:US20050173591A1

    公开(公告)日:2005-08-11

    申请号:US10718634

    申请日:2003-11-24

    Applicant: Hokan Colting

    Inventor: Hokan Colting

    Abstract: An airship has a generally spherical shape and has an internal envelope for containing a lifting gas such as Helium or Hydrogen. The airship has a propulsion and control system that permits it to be flown to a desired loitering location, and to be maintained in that location for a period of time. In one embodiment the airship may achieve neutral buoyancy when the internal envelope is as little as 7% full of lifting gas, and may have a service ceiling of about 60,000 ft. The airship has an equipment module that can include either communications equipment, or monitoring equipment, or both. The airship can be remotely controlled from a ground station. The airship has a solar cell array and electric motors of the propulsion and control system are driven by power obtained from the array. The airship also has an auxiliary power unit that can be used to drive the electric motors. The airship can have a pusher propeller that assists in driving the airship and also moves the point of flow separation of the spherical airship further aft. In one embodiment the airship can be refuelled at altitude to permit extended loitering.

    Abstract translation: 飞艇具有大致球形并且具有用于容纳诸如氦气或氢气的提升气体的内部信封。 飞艇有一个推进和控制系统,允许飞行到所需的游荡地点,并在该地点保持一段时间。 在一个实施例中,当内部信封充满提升气体的时间少至7%时,飞艇可以达到中性浮力,并且可以具有大约6万英尺的服务天花板。飞艇具有可以包括通信设备或监视的设备模块 设备,或两者兼而有之。 飞艇可以从地面站遥控。 飞艇具有太阳能电池阵列,推进和控制系统的电动机由阵列获得的功率驱动。 飞艇还具有可用于驱动电动机的辅助动力单元。 飞艇可以有一个推动螺旋桨,有助于驾驶飞艇,还可以使球形飞艇进一步向后流动。 在一个实施例中,飞艇可以在高度加油以允许延长的游荡。

    Airship system
    148.
    发明授权
    Airship system 失效
    飞艇系统

    公开(公告)号:US06857601B2

    公开(公告)日:2005-02-22

    申请号:US10189796

    申请日:2002-07-03

    Applicant: Yutaka Akahori

    Inventor: Yutaka Akahori

    Abstract: An airship system according to the invention has an airship (110), a base station (120), and at least three measurement points. The airship (110) emits ultrasonic waves upon receiving an instruction from the base station (120). Measurement point units (S1-S3) receive the ultrasonic waves, and thereby measure distances from the airship (110) to the respective measurement points. An MPU that is incorporated in the base station (120) calculates a position of the airship (110). The base station (120) controls a route of the airship (110) based on the calculated position by sending a flight instruction to the airship (110). In this manner, an airship system can be provided that makes it unnecessary for an operator to pilot the airship and that can reduce the load weight and the power consumption of the airship.

    Abstract translation: 根据本发明的飞艇系统具有飞艇(110),基站(120)和至少三个测量点。 飞艇(110)在接收到来自基站(120)的指令时发射超声波。 测量点单元(S1-S3)接收超声波,从而测量从飞艇(110)到相应测量点的距离。 并入基站(120)的MPU计算飞艇(110)的位置。 基站(120)通过向飞艇(110)发送飞行指令,基于计算出的位置来控制飞艇(110)的路线。 以这种方式,可以提供一种飞艇系统,使得飞行员不需要飞行飞艇,并且可以减少飞艇的负载重量和功率消耗。

    Airship system
    149.
    发明申请
    Airship system 失效
    飞艇系统

    公开(公告)号:US20040232285A1

    公开(公告)日:2004-11-25

    申请号:US10877082

    申请日:2004-06-25

    Inventor: Yutaka Akahori

    Abstract: An airship system according to the invention has an airship (110), a base station (120), and at least three measurement points. The airship (110) emits ultrasonic waves upon receiving an instruction from the base station (120). Measurement point units (S1-S3) receive the ultrasonic waves, and thereby measure distances from the airship (110) to the respective measurement points. An MPU that is incorporated in the base station (120) calculates a position of the airship (110). The base station (120) controls a route of the airship (110) based on the calculated position by sending a flight instruction to the airship (110). In this manner, an airship system can be provided that makes it unnecessary for an operator to pilot the airship and that can reduce the load weight and the power consumption of the airship.

    Abstract translation: 根据本发明的飞艇系统具有飞艇(110),基站(120)和至少三个测量点。 飞艇(110)在接收到来自基站(120)的指令时发射超声波。 测量点单元(S1-S3)接收超声波,从而测量从飞艇(110)到相应测量点的距离。 并入基站(120)的MPU计算飞艇(110)的位置。 基站(120)通过向飞艇(110)发送飞行指令,基于计算出的位置来控制飞艇(110)的路线。 以这种方式,可以提供一种飞艇系统,使得飞行员不需要飞行飞艇,并且可以降低飞艇的负载重量和功率消耗。

    AIRSHIP AND METHOD OF OPERATION
    150.
    发明申请
    AIRSHIP AND METHOD OF OPERATION 失效
    航空和操作方法

    公开(公告)号:US20030234320A1

    公开(公告)日:2003-12-25

    申请号:US10178345

    申请日:2002-06-25

    Inventor: Hokan S. Colting

    Abstract: An airship has a generally spherical shape and has an internal envelope for containing a lifting gas such as Helium or Hydrogen. The airship has a propulsion and control system that permits it to be flown to a desired loitering location, and to be maintained in that location for a period of time. In one embodiment the airship may achieve neutral buoyancy when the internal envelope is as little as 7% fall of lifting gas, and may have a service ceiling of about 60,000 ft. The airship has an equipment module that can include either communications equipment, or monitoring equipment, or both. The airship can be remotely controlled from a ground station. The airship has a solar cell array and electric motors of the propulsion and control system are driven by power obtained from the array. The airship also has an auxiliary power unit that can be used to drive the electric motors. The airship can have a pusher propeller that assists in driving the airship and also moves the point of flow separation of the spherical airship further aft. In one embodiment the airship can be refuelled at altitude to permit extended loitering.

    Abstract translation: 飞艇具有大致球形并且具有用于容纳诸如氦气或氢气的提升气体的内部信封。 飞艇有一个推进和控制系统,允许飞行到所需的游荡地点,并在该地点保持一段时间。 在一个实施例中,当内部信封低至7%的提升气体下降时,飞艇可以实现中性浮力,并且可以具有约60,000ft的服务天花板。飞艇具有可以包括通信设备或监视的设备模块 设备,或两者兼而有之。 飞艇可以从地面站遥控。 飞艇具有太阳能电池阵列,推进和控制系统的电动机由阵列获得的功率驱动。 飞艇还具有可用于驱动电动机的辅助动力单元。 飞艇可以有一个推动螺旋桨,有助于驾驶飞艇,还可以使球形飞艇进一步向后流动。 在一个实施例中,飞艇可以在高度加油以允许延长的游荡。

Patent Agency Ranking