Abstract:
The invention relates to a device (1) for handling containers and/or packagings, comprising a first handling unit (2) which handles the containers and/or packagings in a first predetermined manner, and a second handling unit (6) which handles the containers and/or packagings in a second predetermined manner, and comprising a transport unit (8) for transporting the containers and/or packagings, and a monitoring unit for monitoring the device (1). According to the invention, the monitoring unit comprises an unmanned and remote-controlled flying device (20) and a control unit (40) for wirelessly controlling said flying device (20), wherein the flying device (20) comprises an image capturing unit (24), and wherein the device (1) comprises a delimiting unit (30) which delimits a flying region of the flying device (20).
Abstract:
A method including retrieving a multi-dimensional map from a navigation system memory; determining an aerial route between two locations based at least partially upon the multi-dimensional map; and storing the aerial route in the navigation system memory. The multi-dimensional map includes terrain information and object information. The object information includes information regarding location and size of objects extending above ground level. The objects are in uncontrolled airspace, and the object information includes height information regarding a height above ground level of at least some of the objects. The aerial route is limited to the uncontrolled airspace, where the aerial route is over and around at least some of the objects, and where the aerial route is determined, at least partially, based upon the height information of the objects.
Abstract:
FIG. 1 shows airframe 10 with electromagnetic field sensor 12, adjustable reference electromagnetic field strength 14, comparator 16, parachute 18, parachute trigger 19, and inspection camera 20 inspecting a transmission line corridor containing towers 40, 42, and 44, phase conductors 46, 48, and 50, and shield wires 52 and 54. Reference electromagnetic field strength 14 is adjusted before the flight to set the minimum electromagnetic field strength before parachute trigger 19 deploys parachute 18. The reference electromagnetic field strength 14 corresponds to a radius, and thus virtual tunnel 22, outside of which airframe 10 cannot fly without deploying parachute 18, regardless of the state of the autopilot, GPS signal, or radio link.
Abstract:
Systems and methods for UAV safety are provided. An authentication system may be used to confirm UAV and/or user identity and provide secured communications between users and UAVs. The UAVs may operate in accordance with a set of flight regulations. The set of flight regulations may be associated with a geo-fencing device in the vicinity of the UAV.
Abstract:
An unmanned aerial vehicle apparatus comprises a frame. Further, the unmanned aerial vehicle apparatus comprises a propulsion mechanism coupled to the frame that propels the frame through the air. In addition, the unmanned aerial vehicle apparatus comprises a storage device that stores one or more airbags and is coupled to the frame. The unmanned aerial vehicle apparatus also comprises an inflation device coupled to the frame that receives an activation signal and inflates the one or more airbags based upon receipt of the activation signal to deploy the one or more airbags from the storage device prior to an impact of the frame with an object.
Abstract:
A system and method is described for controlling flight trajectories of at least two flying vehicles towards goal positions. The system includes at least two flying vehicles with onboard inertial measurement units for determining and updating orientation, angular velocities, position and linear velocities of the at least two flying vehicles, a motion capture system to detect current position and velocity of each of the at least two flying vehicles, and a base controller in communication with the motion capture system and in communication with the plurality of flying vehicles. The base controller calculates for each of the flying vehicles, at predetermined intervals of time, optimum trajectory paths using piece-wise smooth polynomial functions, applying weighting factors, and enforcing overlap constraints.
Abstract:
An apparatus and system for generating sound and methods for making and using same. A motor-driving signal with an audio signal component is applied to a motor. When driven by the motor-driving signal, the motor thereby can generate a sound that corresponds to the audio signal component. An exemplary sound can include high-quality audio content such as music, speech, or a combination thereof. The motor-driving signal can be produced by modulating a carrier signal with the audio signal and can enable a vibration in the motor for generating the sound. When associated with a mobile platform, the motor can be configured to generate the sound and enable the mobile platform to move. Advantageously, without installing separate audio system hardware, the mobile platform thereby is capable of conveying information that is audible and comprehensible to a human. Communication efficiency between the human and the mobile platform can thus be improved.
Abstract:
According to an aspect of the present invention, a method for monitoring the flight of an unmanned aerial vehicle is provided, the method comprising the steps of: (a) when a user terminal or detecting device is located within a predetermined distance range from at least one unmanned aerial vehicle and acquires at least one piece of identification information from each of the at least one unmanned aerial vehicle, receiving, by a server, the acquired at least one piece of identification information from the user terminal or the detecting device; and (b) transmitting, by the server, detailed information on the unmanned aerial vehicle corresponding to the received at least one piece of identification information to the user terminal or detecting device, so as to support the user terminal or detecting device to provide the same to the user.
Abstract:
A flight plan analysis system is configured to determine a flight plan decision regarding a proposed flight plan for an unmanned aerial vehicle (UAV). The flight plan analysis system includes a flight plan database that stores risk factor data, and a flight plan analysis unit communicatively coupled to the flight plan database. The flight plan analysis unit receives a proposed flight plan for the UAV and determines the flight plan decision based on an analysis of the proposed flight plan and the risk factor data.