Abstract:
Câble métallique (C-1) à deux couches (Ci, Ce) de construction 3+N, gommé in situ, comportant une couche interne (Ci) constituée de trois fils (10) d'âme de diamètre d 1 enroulés ensemble en hélice selon un pas p 1 et une couche externe (Ce) de N fils (11), N variant de 6 à 12, de diamètre d 2 enroulés ensemble en hélice selon un pas p 2 autour de la couche interne (Ci), ledit câble étant caractérisé en ce qu'il présente les caractéristiques suivantes (d 1 , d 2 , p 1 , p 2 étant en mm) : - 0,08 1 2 ≤ 0,20; - p 1 / p 2 ≤ 1; - 3 1 2
Abstract:
The invention concerns an unsaturated external multilayer cable, for use as reinforcing element of a tyre casing reinforcement, comprising a core having a diameter d0 enclosed with an intermediate layer (referenced C1) of six or seven wires (M = 6 or 7) of diameter d1 spirally wound together by a step p1, said layer C1 being itself enclosed by an external layer (referenced C2) of N wires of diameter d2 spirally wound together by a step p2, N being less by 1 to 3 than the maximum number Nmax of wires capable of being wound in one ply around the layer C1, said cord having the following characteristics (d0, d1, d2, p1 and p2 in mm): (i) 0.14
Abstract:
Method of manufacturing a multi-layer metal cord having a plurality of concentric layers of wires, comprising one or more inner layer(s) and an outer layer, of the type “rubberized in situ. The method includes the following steps: at least one step of sheathing at least one inner layer with the rubber or the rubber composition by passing through at least one extrusion head; and an assembling step in which the wires of the outer layer are assembled around the inner layer adjacent to it, in order to form the multi-layer cord thus rubberized from the inside. The rubber is an unsaturated thermoplastic elastomer extruded in the molten state, preferably a thermoplastic elastomer of the thermoplastic stirene (TPS) elastomer type such as an SBS, SBBS, SIS or SBIS block copolymer for example.
Abstract:
Metal cord (C-1) having two layers (Ci, Ce) of 3+N construction, rubberized in situ, comprising an inner layer (Ci) formed from three core wires (10) of diameter d1 wound together in a helix with a pitch p1 and an outer layer (Ce) of N wires (11) N varying from 6 to 12, of diameter d2, which are wound together in a helix with a pitch p2 around the inner layer (Ci), wherein said cord has the following characteristics (d1, d2, p1 and p2 are expressed in mm): 0.20
Abstract:
A tire with a radial carcass reinforcement made up of at least one layer of metal reinforcing elements, the tire comprising a crown reinforcement itself capped radially with a tread, the tread being connected to two beads via two sidewalls. At least 70% of the metal reinforcing elements of at least one layer of the carcass reinforcement are non wrapped cables which, in what is known as the air-wicking test, display a flow rate of less than 2 cm3/min, and at least 10% of the metal reinforcing elements of the at least one layer of the carcass reinforcement are cables which, in what is known as the air-wicking test, display a flow rate of greater than 4 cm3/min.
Abstract:
Method of manufacturing a metal cord with three concentric layers (C1, C2, C3), of the type rubberized in situ, i.e. during its manufacture comprising a first, internal, layer or core (C1), around which there are wound together in a helix, at a pitch p2, in a second, intermediate, layer (C2), N wires of diameter d2, N varying from 3 to 12, around which second layer there are wound together as a helix at a pitch p3, in a third, outer, layer (C3), P wires of diameter d3, P varying from 8 to 20, the said method comprising the following steps: a sheathing step in which the core (C1) is sheathed with a rubber composition named “filling rubber”, in the uncrosslinked state; an assembling step by twisting the N wires of the second layer (C2) around the core (C1) thus sheathed in order to form, at a point named the “assembling point”, an intermediate cord named a “core strand” (C1+C2); an assembling step in which the P wires of the third layer (C3) are twisted around the core strand (C1+C2); a final twist-balancing step.
Abstract:
In a multi-strand steel cable, at least three layers are present. An inner layer includes from 1 to 4 wires. An intermediate layer surrounds the inner layer and includes from 3 to 12 wires wound together in a helix at a pitch p2. An outer layer surrounds the intermediate layer and includes from 8 to 20 wires wound together in a helix at a pitch p3. A rubber sheath covers at least the intermediate layer and is formed of a cross-linkable or cross-linked rubber composition that includes at least one diene elastomer.
Abstract:
Elevator coated ropes or belts are disclosed. The coated rope or belt may include at least one cord and a jacket retaining the at least one cord. The cord may include a plurality of filaments. The filaments are free of second-order helical structure. In a first embodiment, the filaments includes at least one inner filament and a plurality of outer filaments surrounding the at least one inner filament. The outer filaments are bunched together by forming a first-order helical structure through the length of the cord. In a second general embodiment, the filaments are free of both first- and second-order helical structures. The filaments are bunched together by a restraining loop or adhesive at one or more locations along the length of the cord. Methods of making the tension cord are also disclosed.
Abstract:
Method of manufacturing a metal cable having two layers (Ci, Ce) of construction M+N, comprising an inner layer (Ci) having M wires of diameter d1 wound together in a helix at a pitch p1, M varying from 2 to 4, and an outer layer (Ce) of N wires of diameter d2, wound together in a helix at a pitch p2 around the inner layer (Ci), the method comprising the following steps performed in line: a step of assembling the M core wires by twisting to form the inner layer (Ci) at a point of assembling; downstream of the point of assembling of the M core wires, a step of sheathing the inner layer (Ci) with a diene rubber composition called “filling rubber”, in the raw state; a step of assembling the N wires of the outer layer (Ce) by twisting around the inner layer (Ci) thus sheathed; and a step of twist balancing. Also disclosed is a device for implementing such a method.
Abstract:
Method of manufacturing a multi-layer metal cord having a plurality of concentric layers of wires, comprising one or more inner layer(s) and an outer layer, of the type “rubberized in situ.” The method includes the following steps: at least one step of sheathing at least one inner layer with the rubber or the rubber composition by passing through at least one extrusion head; and an assembling step in which the wires of the outer layer are assembled around the inner layer adjacent to it, in order to form the multi-layer cord thus rubberized from the inside. The rubber is an unsaturated thermoplastic elastomer extruded in the molten state, preferably a thermoplastic elastomer of the thermoplastic stirene (TPS) elastomer type such as an SBS, SBBS, SIS or SBIS block copolymer for example.