Abstract:
A Micro-Electro-Mechanical System (MEMS) interferometer provides for self-calibration of mirror positioning of a moveable mirror. The moveable mirror is coupled to a MEMS actuator having a variable capacitance. The MEMS interferometor includes a capacitive sensing circuit for determining the capacitance of the MEMS actuator at two or more known positions of the moveable mirror and a calibration module for using the actuator capacitances at the known positions to compensate for any drift in the capacitive sensing circuit.
Abstract:
Methods and systems for detecting early stage dental caries and decays are provided. In particular, in an embodiment, laser-induced autofluorescence (AF) from multiple excitation wavelengths is obtained and analyzed. Endogenous fluorophores residing in the enamel naturally fluoresce when illuminated by wavelengths ranging from ultraviolet into the visible spectrum. The relative intensities of the AF emission changes between different excitation wavelengths when the enamel changes from healthy to demineralized. By taking a ratio of AF emission spectra integrals between different excitation wavelengths, a standard is created wherein changes in AF ratios within a tooth are quantified and serve as indicators of early stage enamel demineralization. The techniques described herein may be used in conjunction with a scanning fiber endoscope (SFE) to provide a reliable, safe and low-cost means for identifying dental caries or decays.
Abstract:
The present invention generally pertains to a system, method and kit for the detection and measurement of spectroscopic properties of light from a sample, or the scalable detection and measurement of spectroscopic properties of light from each sample present among multiple samples, simultaneously, wherein the system comprises: an optical train comprising a dispersing element; and an image sensor. The light detected and measured may comprise light scattered from a sample, emitted as chemiluminescence by a chemical process within a sample, selectively absorbed by a sample, or emitted as fluorescence from a sample following excitation.
Abstract:
A method and system for the remote quantitative detection of a compound in the atmosphere. A spectrometer (6) is attached to a moving platform (1) for measuring a light spectrum along a first path (10) between the spectrometer and a surface area (8). A second light spectrum is measured along a second path (7) between the spectrometer and said surface area (8) which second path has a length different from the first path. The two spectra are compared to determine the concentration of the compound.
Abstract:
A method and apparatus is described for optically scanning a field of view, the field of view including at least part of an organ as exposed during surgery, and for identifying and classifying areas of tumor within the field of view. The apparatus obtains a spectrum at each pixel of the field of view, and classifies pixels with a kNN-type or neural network classifier previously trained on samples of tumor and organ classified by a pathologist. Embodiments use statistical parameters extracted from each pixel and neighboring pixels. Results are displayed as a color- encoded map of tissue types to the surgeon. In variations, the apparatus provides light at one or more fluorescence stimulus wavelengths and measures the fluorescence light spectrum emitted from tissue corresponding to each stimulus wavelength. The measured emitted fluorescence light spectra are further used by the classifier to identify tissue types in the field of view.
Abstract:
L'invention concerne un engin aéronautique (2) comportant un spectromètre (4) apte à générer une analyse spectrale de rayonnements réfléchis par une portion (12) de la surface de la terre, l'engin (2) étant en orbite autour de la terre avec un mouvement relatif par rapport à la surface de la terre. Le spectromètre comprend un filtre (14) propre à filtrer la lumière dans une bande spectrale étroite de rayonnements incidents dépendant de l'angle d'incidence desdits rayonnements sur le filtre; ladite bande spectrale filtrée étant propre à varier continûment dans une plage spectrale plus large, lorsque l'angle d'incidence desdits rayonnements incidents varie continûment. L'engin (2) comprend des moyens (6, 8) de détermination de la bande spectrale de rayonnements filtrés issus d'une même portion de surface (12) pour plusieurs positions de l'engin (2) par rapport à la portion de surface (12).