Abstract:
Die Erfindung betrifft ein Spektrometer zur Untersuchung der optischen Emission einer Probe mittels gepulster Anregung einer optischen spektralen Emission, mit einer Anregungsquelle, einer Spaltanordnung, wenigstens einem dispersiven Element und mit Detektoren für das emittierte Spektrum, bei dem zwei Strahlengänge mit zwei dispersiven Elementen vorgesehen sind, von denen das erste dispersive Element das Spektrum der Emission auf eine Anzahl ortsauflösender Detektoren abbildet und das zweite dispersive Element das Spektrum der Emission auf eine Anzahl zeitauflösender Detektoren abbildet.
Abstract:
The present invention provides systems and methods for quantifying, purifying and separating fullerenes, such as single wall carbon nanotubes (SWNTs). The purification/separation combination provides nearly 100% carbonaceous impurity-free SWNT content from a given impure sample and provides a desired chirality and diameter from a given non-separated sample. Nanometrological validation of the success of purification and separation uses a pyroelectric detector and Raman spectroscopy in a single system, thus providing a critical aspect for the nanomanufacturing environment. The purification/separation and nanometrological validations may be performed in a feedback loop to provide a satisfactorily refined sample and optimized purification/separation settings.
Abstract:
An optical characterisation system is described for characterising optical material. The system typically comprises a diffractive element (104), a detector (106) and an optical element (102). The optical element (102) thereby typically is adapted for receiving an illumination beam, which may be an illumination response of the material. The optical element (102) typically has a refractive surface for refractively collimating the illumination beam on the diffractive element (104) and a reflective surface for reflecting the diffracted illumination beam on the detector (106). The optical element (102) furthermore is adapted for cooperating with the diffractive element (104) and the detector (106) being positioned at a same side of the optical element (102) opposite to the receiving side for receiving the illumination beam.
Abstract:
A tunable transmissive grating comprises a transmissive dispersive element, a reflective element/ and an angle θ formed between the two elements. A first optical path is formed according to the angle θ, wherein light dispersing from the dispersive element is directed onto the reflective element and reflects therefrom. At least one element is rotatable about a rotational center to cause a second optical path and thereby tune the wavelength of the light reflecting from the reflective element. Both elements can be rotatable together around a common rotational center point according to certain embodiments, and/or each element can be independently rotated around a rotational axis associated only with that element. According to some embodiments, the relative angle θ formed between the elements is held constant; however, in other embodiments θ can vary. A control system can be used to operate the device.
Abstract:
A monochromator for use in a spectrograph admits light from an aperture to a primary reflector (preferably an off-axis parabolic mirror) which collimates the input light with low aberration and directs it to a diffraction grating. The component wavelengths of the input light are then directed to first and second secondary reflectors (preferably spherical or toroidal mirrors), which are chosen to cooperatively focus the component wavelengths in ordered bands across an array detector while each at least substantially cancels the effects of any aberrations introduced by the other. By choosing optical elements which supply the grating with input light with low aberration, and then choosing optical elements which receive the component wavelengths from the grating and which offset any aberrations introduced by the other receiving optical elements, wavelength resolution at the detector can be enhanced.
Abstract:
The invention relates to a method and to an assembly for operating an optical imaging system for detecting the characteristic values of the wavelength-dependent behavior of an illuminated specimen, especially of the emission and/or absorption behavior, preferably of the fluorescence and/or luminescence and/or phosphorescence and/or enzyme-activated light emission and/or enzyme-activated fluorescence, preferably for the purpose of operating a laser scanning microscope. According to the inventive method, the image spot information of the specimen is broken down into its spectral components in a spatially resolved and wavelength-independent manner on the detector end, and for different spectral components at least one summation is made.
Abstract:
The present invention provides in a wavelength division multiplexer and/or a dense wavelength division multiplexer (WDM/DWDM) by incorporating an electronically reconfigurable diffraction grating (108) diffracting at least one input light beam (106) into diffracted light beams of N wavebands (110, 112, 114, 116). The introduction of the electronically reconfigurable diffraction grating (108), which may be fabricated using MEMS (microelectromechanical systems) technology, improves the compact design, durability, and dynamic functionality of the WDM/DWDM system.
Abstract:
A spectrum analyzer providing an integrated calibration function and for providing that calibration function automatically. The injection of light to be analyzed through a central aperture (14) of a scanning grating (12) onto a focusing reflector (16) provides in combination four traversals of the space therebetween. The spectrometer thus is used to separate wavelength information spacially and receive it back at the same or adjacent aperture(s) (14) to be analyzed by a processing system (50) to establish the spectra for the incident light. The light is typically injected from and received back into optical fibers (42, 46) or other light carrying elements. Calibration light is also applied through the same or adjacent apertures (14) in the grating (12) from a known source and spectra such as Argon to use as a calibration reference by detecting the known spectra peaks and correlating it to grating scan angle. The same structure is also used as a telecommunications channel router.