Abstract:
A component includes a main member that includes a first surface that opposes a circuit board, the component being mounted to the circuit board during an assembly procedure, and a plurality of legs that protrude from the first surface, the plurality of legs having ends, wherein the component is mounted on the circuit board with the ends of the plurality of legs fixed to the circuit board, each of the ends of the plurality of legs includes an end surface that opposes the circuit board at time of the assembly procedure, and also includes a bevel that is continuous with the end surface and inclined with respect to the end surface, and an interior angle formed between the end surface and the bevel is larger than or equal to 120° and smaller than or equal to 170°.
Abstract:
Described are electromagnetic shields comprising a substrate, a conductive additive, and a binder incorporated with the conductive additive and deposited on the substrate, and methods of making thereof.
Abstract:
A module includes a substrate including a first surface, a first component mounted on the first surface, at least a part of which is covered with a first conductive film, a sealing resin arranged to cover the first surface and the first component, and a shield film that covers a part of a surface of the sealing resin on a side distant from the substrate. The surface of the sealing resin on the side distant from the substrate includes a shielded region covered with the shield film when viewed in a direction perpendicular to the first surface and a non-shielded region not covered with the shield film. The non-shielded region is superimposed on at least a part of the first conductive film.
Abstract:
The disclosure relates to a control device in a motor vehicle. The control device includes a housing cover with a peripheral edge region, and a planar, electrical connecting apparatus with integrated conductor tracks. The housing cover, in the edge region, is cohesively connected at least to the connecting apparatus and forms a cavity with the connecting apparatus. The control device also includes at least one electronic component within the cavity. The connecting apparatus electrically connects the at least one electronic component to electronic components outside the cavity. The peripheral edge region is encapsulated by injection molding in a media-tight manner by a polymer at least in the region of the connecting seam between the housing cover and the connecting apparatus.
Abstract:
The disclosure relates to a control device in a motor vehicle. The control device includes a housing cover with a peripheral edge region, and a planar, electrical connecting apparatus with integrated conductor tracks. The housing cover, in the edge region, is cohesively connected at least to the connecting apparatus and forms a cavity with the connecting apparatus. The control device also includes at least one electronic component within the cavity. The connecting apparatus electrically connects the at least one electronic component to electronic components outside the cavity. The housing cover is encapsulated by injection molding in a media-tight manner by a polymer beyond the peripheral edge region.
Abstract:
According to various aspects, exemplary embodiments are disclosed of board level shields with virtual grounding capability. In an exemplary embodiment, a board level shield includes one or more resonators configured to be operable for virtually connecting the board level shield to a ground plane or a shielding surface. Also disclosed are exemplary embodiments of methods relating to making board level shields having virtual grounding capability. Additionally, exemplary embodiments are disclosed of methods relating to providing shielding for one or more components on a substrate by using a board level shield having virtual grounding capability. Further exemplary embodiments are disclosed of methods relating to making system in package (SiP) or system on chip (SoC) shielded modules and methods relating to providing shielding for one or more components of SiP or SoC module.
Abstract:
A shielding apparatus is provided. The apparatus includes a printed circuit board including a plurality of catching parts, a shield member configured to cover the printed circuit board, and at least one shield fastening part provided in the shield member and configured to be one of fastened to and separated from the plurality of catching parts by a resilient force while not protruding.
Abstract:
Described are a shielding case, a Printed Circuit Board (PCB) and a terminal device. The shielding case includes a first shielding case body (1) and a second shielding case body (2) which are interconnected with each other, wherein the second shielding case body (2) at least partially covers an outside of the first shielding case body (1), and a heat storage material (3) is accommodated between the first shielding case body (1) and the second shielding case body (2).
Abstract:
The device includes a body and a plurality of contact portions. The body is substantially planar. The plurality of contact portions are associated with the body so as to form ports. The plurality of contact portions are in electrical communication with the body. The port of each contact portion having an inside diameter substantially equal to ID1. The body and the contact portions are constructed of a conductive metallic material.
Abstract:
Electrical components such as integrated circuits and other components may be mounted on a substrate such as a printed circuit substrate. A molded plastic cap may cover the components and a portion of the printed circuit substrate to form a packaged electrical device. Metal structures such as springs, posts, and other metal members may be insert molded within the plastic cap. A metal layer on the surface of the cap may be patterned to from electromagnetic shielding, signal paths, contact pads, sensor electrodes, antennas, and other structures. Multiple substrates each with a respective set of mounted electrical components may be joined using a flexible printed circuit. The flexible printed circuit may be covered with a rigid cap portion or an elastomeric material or may be left uncovered.