Abstract:
A heat sink (11) comprised of a first heat dissipation portion (11a), a second heat dissipation portion (11b), and a third heat dissipation portion (11c) is mounted on a circuit board (14). Two sets of an inductor (L1, L2) that constitute an interleaved power factor correction circuit are arranged in a spatial region formed in the inside of the heat sink and are mounted on the circuit board. Two sets of a transistor (Tr1, Tr2) and a diode (D1, D2) that constitute the interleaved power factor correction circuit are attached to an outer surface of the first heat dissipation portion and are mounted on the circuit board.
Abstract:
A power conversion device includes a casing, a structural plate, a converter module, an auxiliary circuit board module and a top cover. The casing includes a base plate and a side wall, and the base plate and the side wall form a chamber. The structural plate is located in the chamber. The converter module is located between the base plate and the structural plate. The auxiliary circuit board module is located at a side of the structural plate in the chamber away from the base plate, and is electrically connected with the converter module. The top cover seals the chamber.
Abstract:
Disclosed are an LED package, an LED package module having the same and a manufacturing method thereof, and a head lamp module having the same and a control method thereof. The light emitting diode package includes: a package substrate; a light emitting diode chip mounted on one surface of the package substrate; an electrode pad formed on the other surface of the package substrate and electrically connected to the light emitting diode chip; and a heat radiation pad formed on the other surface of the package substrate and electrically insulated from the electrode pad.
Abstract:
An electrical assembly including a substantially planar substrate having at least one recess therein and a plurality of electrical components. The electrical components are positioned in the at least one recess and include a first electrical component and a second electrical component. Each of the electrical components has a body and an electrical connection. The electrical connection of the first electrical component and the electrical connection of the second electrical component are aligned with each other when the body of the first electrical component is in a recess and the body of the second electrical component is in a recess.
Abstract:
A printed circuit board for a liquid crystal display that has a structure for preventing interference between a feedback voltage generating unit or a compensating unit of a DC-DC converter and a pulse signal wiring line. The printed circuit board has a boosting circuit for boosting an input voltage to generate an analog driving voltage and a pulse signal, the boosting circuit including a control chip and an inductor coupled between an input voltage node and the control chip, the control chip supplied with a feedback voltage for controlling the amount of current flowing through the inductor, a feedback voltage generating circuit for supplying the feedback voltage to the control chip by using the analog driving voltage, and a pulse signal wiring line connecting the control chip and the inductor, and separated from the feedback voltage generating circuit.
Abstract:
A controller, for a battery-operated vehicle or the like, comprises a plurality of mosfet/diode/capacitor circuits. A printed circuit board (PCB) has the mosfet/diode/capacitor circuits arranged in four sets, one set along each side of the board, and with the inner areas of the board on both sides and the outer area on at least one side being substantially solid tracking areas forming the connections to the circuits. The connectors (A, B+, B-) to circuits are located substantially along a diagonal of the board, with the connectors (A and B+) to the two sides of the diodes located at opposite corners of the inner areas of the board. The inner tracking areas are divided by isolating lines into separate fingers for the respective circuits. The mosfet and diode of each circuit are mounted on one side of the board and the capacitor on the other, with a heat sink bar located between the mosfet and diode with the mosfet and diode clamped to it by a nut and bolt passing through lugs on the mosfet and diode each a matching hole in the bar.