Abstract:
Methods and devices for isolating and sorting nanoparticles are disclosed herein. Nanopores of a desired size can be formed in silicon dioxide membranes and used as filters to separate nanoparticles. Devices are also provided herein for sorting nanoparticles with multiple filters having various sized nanopores.
Abstract:
Methods for fabricating silicon nanowire chemical sensing devices, devices thus obtained, and methods for utilizing devices for sensing and measuring chemical concentration of selected species in a fluid are described. Devices may comprise a metal-oxide-semiconductor field-effect transistor (MOSFET) structure.
Abstract:
Methods for measuring and analyzing biological or chemical samples using consumer electronic devices and systems are described. Moreover, an accessory to enable using devices such as cell phones and smartphones with fluidic illumination chambers are described.
Abstract:
Devices and system for preparing samples are described. Such devices can comprise fluidic chambers, reservoirs, and movable structures for controlling the movement of samples. The device can also comprise functional elements for performing specific operations.
Abstract:
A method of fabricating an elastomeric structure, comprising: forming a first elastomeric layer on top of a first micromachined mold, the first micromachined mold having a first raised protrusion which forms a first recess extending along a bottom surface of the first elastomeric layer; forming a second elastomeric layer on top of a second micromachined mold, the second micromachined mold having a second raised protrusion which forms a second recess extending along a bottom surface of the second elastomeric layer; bonding the bottom surface of the second elastomeric layer onto a top surface of the first elastomeric layer such that a control channel forms in the second recess between the first and second elastomeric layers; and positioning the first elastomeric layer on top of a planar substrate such that a flow channel forms in the first recess between the first elastomeric layer and the planar substrate.
Abstract:
The present invention provides microfluidic devices and methods for using the same. In particular, microfluidic devices of the present invention are useful in conducting a variety of assays and high throughput screening. Microfluidic devices of the present invention include elastomeric components and comprise a main flow channel; a plurality of branch flow channels; a plurality of control channels; and a plurality of valves. Preferably, each of the valves comprises one of the control channels and an elastomeric segment that is deflectable into or retractable from the main or branch flow channel upon which the valve operates in response to an actuation force applied to the control channel.
Abstract:
A microfluidic fluid separator for separating target components of a fluid by filtration is described. Methods for separating target components of a fluid by filtration and methods for processing blood on a large scale with the microfluidic fluid separator are provided.
Abstract:
The present invention provides microfluidic devices and methods for using the same. In particular, microfluidic devices of the present invention are useful in conducting a variety of assays and high throughput screening. Microfluidic devices of the present invention include elastomeric components and comprise a main flow channel; a plurality of branch flow channels; a plurality of control channels; and a plurality of valves. Preferably, each of the valves comprises one of the control channels and an elastomeric segment that is deflectable into or retractable from the main or branch flow channel upon which the valve operates in response to an actuation force applied to the control channel.
Abstract:
A method and apparatus for producing a verification of digital circuits are provided. In an exemplary embodiment on the invention, a plurality of verification scopes of an integrated circuit design as defined as part of a verification plan. A plurality of verification runs are executed within two or more verification scopes defined by the verification plan. At least two verification runs are selected to merge verification results together. Like named scenarios are merged together for each verification scope to generate merged verification results that are then stored into a merge database. A verification report is generated for the integrated circuit design from the merged verification results. A merge point may be specified so like named subtrees and subgroups may be merged across different verification scopes of selected verification runs. The merge point may combine check and coverage results obtained during simulation with check and coverage results obtained during formal verification.
Abstract:
Optical devices and methods for measuring samples while minimizing stray light are described. Such methods and devices are applicable to multiple fluid chambers with multiple sources as an integrated optical element. Light sources can be embedded onto a chip or microarray with multiple chambers, or can be part of an instrument arrangement.