Abstract:
A method of forming a semiconductor structure is provided. A substrate having a memory region is provided. A plurality of fin structures are provided and each fin structure stretching along a first direction. A plurality of gate structures are formed, and each gate structure stretches along a second direction. Next, a dielectric layer is formed on the gate structures. A first patterned mask layer is formed, wherein the first patterned mask layer has a plurality of first trenches stretching along the second direction. A second patterned mask layer on the first patterned mask layer, wherein the second patterned mask layer comprises a plurality of first patterns stretching along the first direction. Subsequently, the dielectric layer is patterned by using the first patterned mask layer and the second patterned mask layer as a mask to form a plurality of contact vias. The contact holes are filled with a conductive layer.
Abstract:
A method of forming a semiconductor device includes following steps. Firstly, a gate structure is formed on a substrate, and two source/drain regions are formed. Then, a contact etching stop layer (CESL) is formed to cover the source/drain regions, and a first interlayer dielectric (ILD) layer is formed on the CESL. Next, a replace metal gate process is performed to form a metal gate and a capping layer on the metal gate, and a second ILD layer is formed on the first ILD layer. Following these, a first opening is formed in the second and first ILD layers to partially expose the CESL, and a second opening is formed in the second ILD to expose the capping layer. Finally, the CESL and the capping layer are simultaneously removed.
Abstract:
A semiconductor structure is disclosed. The semiconductor structure includes a substrate, and an interlayer dielectric disposed on the substrate which has agate structure therein. The gate structure further includes a gate electrode with a protruding portion, and a gate dielectric layer disposed between the gate electrode and the substrate. A spacer is disposed between the interlayer dielectric and the gate electrode. An insulating cap layer is disposed atop the gate electrode and encompasses the top and the sidewall of the protruding portion.
Abstract:
A method of manufacturing a semiconductor device includes: providing a semiconductor having active regions; depositing a dielectric layer on the semiconductor; forming a patterned etch mask on the dielectric layer; depositing a further dielectric layer on the dielectric layer and the patterned etch mask; planarizing the further dielectric layer until the patterned etch mask is exposed; and forming a further patterned etch mask having an opening on the further dielectric layer so that portions of the patterned etch mask are exposed from the opening.
Abstract:
A manufacturing method of a semiconductor structure includes the following steps. Gate structures are formed on a semiconductor substrate. A source/drain contact is formed between two adjacent gate structures. The source/drain contact is recessed by a recessing process. A top surface of the source/drain contact is lower than a top surface of the gate structure after the recessing process. A stop layer is formed on the gate structures and the source/drain contact after the recessing process. A top surface of the stop layer on the source/drain contact is lower than the top surface of the gate structure. A semiconductor structure includes the semiconductor substrate, the gate structures, a gate contact structure, and the source/drain contact. The source/drain contact is disposed between two adjacent gate structures, and the top surface of the source/drain contact is lower than the top surface of the gate structure.
Abstract:
A method for fabricating semiconductor device is disclosed. First, a substrate is provided, in which the substrate includes a first metal gate and a second metal gate thereon, a first hard mask on the first metal gate and a second hard mask on the second metal gate, and a first interlayer dielectric (ILD) layer around the first metal gate and the second metal gate. Next, the first hard mask and the second hard mask are used as mask to remove part of the first ILD layer for forming a recess, and a patterned metal layer is formed in the recess, in which the top surface of the patterned metal layer is lower than the top surfaces of the first hard mask and the second hard mask.
Abstract:
Semiconductor devices having metal gate include a substrate, a first nFET device formed thereon, and a second nFET device formed thereon. The first nFET device includes a first n-metal gate, and the first n-metal gate includes a third bottom barrier metal layer and an n type work function metal layer. The n type work function metal layer directly contacts the third bottom barrier layer. The second nFET device includes a second n-metal gate and the second n-metal gate includes a second bottom barrier metal layer, the n type work function metal layer, and a third p type work function metal layer sandwiched between the second bottom barrier metal layer and the n type work function metal layer. The third p type work function metal layer of the second nFET device and the third bottom barrier metal layer of the first nFET device include a same material.
Abstract:
A method for manufacturing a semiconductor device having a metal gate includes forming a filling layer and a high-K gate dielectric layer in the first recess between a pair of spacers, wherein the high-K gate dielectric layer and the filling layer are stacked in the first recess sequentially, and an exposed top surface of the high-K gate dielectric layer and a top surface of the filling layer are lower than a top surface of each spacer; and removing a part of each spacer and widening the first recess on the top surface of the filling layer to form a second recess, wherein a width of the second recess is larger than a width of the first recess.
Abstract:
A semiconductor device is disclosed. The semiconductor device includes: a substrate; a first metal gate on the substrate; a first hard mask on the first metal gate; an interlayer dielectric (ILD) layer on top of and around the first metal gate; and a patterned metal layer embedded in the ILD layer, in which the top surface of the patterned metal layer is lower than the top surface of the first hard mask.
Abstract:
A method for fabricating semiconductor device is disclosed. The method includes the steps of: providing a substrate; forming a first gate structure on the substrate; forming a first contact plug adjacent to the first gate structure; and performing a replacement metal gate (RMG) process to transform the first gate structure into metal gate.