Abstract:
To provide a system comprising: an unmanned aerial vehicle; and a free space location database, wherein the unmanned aerial vehicle has: a camera that is capable of 360°-image capturing on a horizontal plane; a positioning apparatus that measures a location of the unmanned aerial vehicle; a direction measuring apparatus that measures a direction of the unmanned aerial vehicle; an altitude measuring apparatus that measures an altitude of the unmanned aerial vehicle; and an information transmitting unit that transmits, to the free space location database, camera image data captured by the camera at every predetermined altitude, and the location, direction and altitude of the unmanned aerial vehicle at time of image capturing by the camera, and based on the camera image data, and the location, direction and altitude of the unmanned aerial vehicle, the free space location database corrects 3D data including terrain information to generate free space location data.
Abstract:
A vehicle-based airborne wind turbine system having an aerial wing, a plurality of rotors each having a plurality of rotatable blades positioned on the aerial wing, an electrically conductive tether secured to the aerial wing and secured to a ground station positioned on a vehicle, wherein the aerial wing is adapted to receive electrical power from the vehicle that is delivered to the aerial wing through the electrically conductive tether; wherein the aerial wing is adapted to operate in a flying mode to harness wind energy to provide a first pulling force through the tether to pull the vehicle; and wherein the aerial wing is also adapted to operate in a powered flying mode wherein the rotors may be powered so that the turbine blades serve as thrust-generating propellers to provide a second pulling force through the tether to pull the vehicle
Abstract:
An armored vehicle includes: a basic armored vehicle having a predetermined basic external armor; a modularized armor structure exchangeably attached to the basic external armor; and an unmanned aerial vehicle loaded on the modularized armor structure. The modularized armor structure includes: an unmanned aerial vehicle loading section configured to load the unmanned aerial vehicle; an armoring material structure formed of armoring material; and an attaching section used to exchangeably attach the modularized armor structure to the basic armored vehicle.
Abstract:
Systems and methods are provided for docking an unmanned aerial vehicle (UAV) with a vehicle. The UAV may be able to distinguish a companion vehicle from other vehicles in the area and vice versa. The UAV may take off and/or land on the vehicle. The UAV may be used to capture images and stream the images live to a display within the vehicle. The vehicle may control the UAV. The UAV may be in communication with the companion vehicle while in flight.
Abstract:
An airborne surveillance platform supporting optoelectronic and electronic sensors, including level sensors, is automatically stabilized in a horizontal plane by varying the length of two tethers out of three. Error signals from the level sensors are transmitted over a wireless link to control components on a rotating platform on the host vehicle, which automatically vary the length of tethers. Applications include images of the surrounding terrain generated by a video camera and a thermal imager in military, police and civil emergency operations.
Abstract:
An unmanned air vehicle for military, land security and the like operations includes a fuselage provided with foldable wings having leading edge flaps and trailing edge ailerons which are operable during ascent from launch to control the flight pattern with the wings folded, the wings being deployed into an open unfolded position when appropriate. The vehicle is contained within a pod from which it is launched and a landing deck is provided to decelerate and arrest the vehicle upon its return to land.
Abstract:
The present invention provides a method, comprising: providing an aerial platform having an outer shell; disposing a gas containment system within the outer shell; attaching the aerial platform to an object using a tether system; and inflating the aerial platform and lifting a payload; wherein the aerial platform is configured such that it may be completely collapsed when deployed.
Abstract:
An unmanned aerial vehicle (UAV) is launched and recovered using a UAV management system. The UAV is stored in a magazine and moved from the magazine during a launch operation and to the magazine during a recovery operation.
Abstract:
The present invention discloses an aerial vehicle launching system, which may include a launch platform and a restraint system coupled to the launch platform. The restraint system has at least one passive restraint suitably adapted to indirectly restrain an aerial vehicle, where the restraint system is configured to coordinate the uniform retention and release of the passive restraint in order to launch the aerial vehicle.
Abstract:
Methods and apparatuses provide surveillance of a convoy. At least one unmanned aerial vehicle (UAV) obtains images around the convoy's position to provide information about potential hostile activity while the UAV follows a generally curvilinear path around the convoy as instructed by one of the convoy vehicles. Path planner algorithm software is executed by the controlling convoy vehicle in which position and velocity information regarding the unmanned aerial vehicle and the convoy are processed to determine values of control variables. The determined values are sent to the unmanned aerial vehicle over a wireless communications channel. The path of the surveillance vehicle may be changed in order to provide evasive measures to avoid an attack on the surveillance vehicle by an adversary.