Abstract:
Embodiments of the present disclosure include an optical probe capable of communicating identification information to a patient monitor in addition to signals indicative of intensities of light after attenuation by body tissue. The identification information may indicate operating wavelengths of light sources, indicate a type of probe, such as, for example, that the probe is an adult probe, a pediatric probe, a neonatal probe, a disposable probe, a reusable probe, or the like. The information could also be utilized for security purposes, such as, for example, to ensure that the probe is configured properly for the oximeter, to indicate that the probe is from an authorized supplier, or the like.
Abstract:
Photoluminescence quantum yield (PLQY) testing of quantum dots is described. In one embodiment, a method involves heating a sample including quantum dots and illuminating the sample with a light source. The method involves measuring spectra of luminescence from the illuminated quantum dots of the sample at each of a plurality of temperatures. The method involves measuring each of the plurality of temperatures with a temperature sensor. The PLQY at each of the plurality of temperatures is computed based on the measured spectra. The method further involves computing a relationship between QD emission wavelength of the measured spectra and the plurality of temperatures measured with the temperature sensor. The relationship is used to determine the QD temperature corresponding to each of the PLQY computations. In one embodiment, an integrating sphere moves on a gantry over the samples.
Abstract:
Embodiments of the present disclosure include an optical probe capable of communicating identification information to a patient monitor in addition to signals indicative of intensities of light after attenuation by body tissue. The identification information may indicate operating wavelengths of light sources, indicate a type of probe, such as, for example, that the probe is an adult probe, a pediatric probe, a neonatal probe, a disposable probe, a reusable probe, or the like. The information could also be utilized for security purposes, such as, for example, to ensure that the probe is configured properly for the oximeter, to indicate that the probe is from an authorized supplier, or the like.
Abstract:
A spectrometer 1A is provided with an integrating sphere 20 for observing measured light emitted from a sample S of a measurement target, and a Dewar vessel 50 which retains a medium R for regulating temperature of the sample S, so as to cover the sample S and a second container portion 50b of which is located so as to face the interior of the integrating sphere 20. The sample S can be easily regulated at a desired temperature with the use of the Dewar vessel 50 retaining the medium R so as to cover the sample S. As the second container portion 50b is located so as to face the interior of the integrating sphere 20, the temperature of the sample S is regulated by the medium R, while inhibiting an external ambience around the integrating sphere from affecting the sample S. Therefore, the sample S can be efficiently regulated at a desired temperature.
Abstract:
A measurement device for spectroscopic examination of samples comprises a cavity extending in a longitudinal direction, a first opening to face a sample, a plurality of second openings for capturing light originating from the sample and at least one third opening for coupling light into the cavity. Such a measurement device is particularly suitable for spectroscopic examinations of planar samples.
Abstract:
An optical measurement apparatus includes a spectroscopic measurement device, a first optical fiber for propagating light to be measured, a hemispherical portion having a light diffuse reflection layer on an inner wall of the hemispherical portion, and a plane portion disposed to close an opening of the hemispherical portion and having a mirror reflection layer located to face the inner wall of the hemispherical portion. The plane portion includes a first window for directing the light emitted thorough the first optical fiber into an integrating space. The integrating space is formed by the hemispherical portion and the plane portion. The optical measurement apparatus further includes a second optical fiber for propagating the light in the integrating space to the spectroscopic measurement device through a second window of the plane portion.
Abstract:
Provided are an integrating sphere photometer and a measuring method of the same. The integrating sphere photometer includes a plurality of photodetectors, an integrating sphere having through-holes formed to correspond to the photodetectors, baffles disposed inside the integrating sphere in front of the photodetectors to be spaced apart from the photodetectors, a photometer disposed at a through-hole, and an adjustment unit adjusting output signals of the photodetectors to have the same output signal with respect to light illuminated from a point-like standard light source disposed at a center region in the integrating sphere.
Abstract:
An integrating sphere photometer and a measuring method of the same are provided to precisely measure a directional light source. The integrating sphere photometer includes an integrating sphere having a plurality of through-holes, a plurality of photometers disposed at the through-holes, baffles disposed in front of the photometers to be spaced apart therefrom, an auxiliary light source disposed inside the integrating sphere, an auxiliary baffle disposed in front of the auxiliary light source, and a summing unit of output signals of the photometers under the illumination of a light source to be measured disposed in the central area inside the integrating sphere.
Abstract:
An improved method and an improved device for carrying out an optical comparison between at least two samples, preferably by comparing sections that can be selected, is characterized by the following characteristics: the sample (UR, LE, I) that is to be examined and is characterized by a non-uniformity in the structure and/or color is illuminated by diffused light; from the light reflected by the sample (UR, LE, I) to be examined, an interference spectrum is created by means of a spectrometer; the interference spectrum created by the spectrometer is depicted on a camera; the interference spectrum obtained in this way and/or values of the sample (I) to be examined derived therefrom are used as sample values which are compared to sample values of a reference sample (UR, LE) obtained accordingly.
Abstract:
The present invention provides an optical transmission device, comprising a chamber having a light input into the chamber, and having a first port allowing light to pass out of the chamber, and comprising internal surfaces where at least a portion of the surfaces is diffusely reflecting, and where at least a portion of the one or more surfaces is specularly reflecting, and where the light input and the first port and the one or more surfaces are configured such that substantially all light entering the chamber via the light source within a first predetermined aperture must encounter the diffusely reflecting portion before exiting the chamber via the first port within a second predetermined aperture. The invention can provide substantially homogenous light transmission, both as a source of light for optical systems and as a collector of light from a sample.