Abstract:
Optical systems, and corresponding methods, for multiple reactions are provided. The optical systems are in a fixed position relative to a thermal assembly and include at least one array of excitation sources (e.g., light emitting diodes (LEDs)) configured to output excitation energy along an excitation optical path. In addition, a detector configured to receive emission energy along a detection optical path in the same plane as the excitation optical path is also provided.
Abstract:
A planar sample, particularly of the type used in biological laboratories for detection and sometimes analysis of two-dimensional arrays of proteins, nucleic acids, or other biological species, is illuminated by epi-illumination using optically filtered line lights that are arranged along opposing parallel sides of a rectangle in which the sample array resides, with two coaxial line lights on each side of the rectangle, and the two on any given side being separated by a gap whose optimal width depends on the wavelength band transmitted by the optical filter. Surprisingly, the gap eliminates the peak in intensity at the center of the sample area and the decrease that occurs from the center outward that would otherwise occur with a single continuous filtered line light, producing instead a substantially uniform intensity along the direction parallel to the line lights.
Abstract:
An illumination device has a board, a plurality of light emitting elements that are mounted on the board, the plurality of light emitting elements being disposed such that a light irradiation direction of each light emitting element becomes substantially perpendicular to the board, and a plurality of lenses. Each of the plurality of lens is paired with one of the plurality of light emitting elements. A relative positional relationship between the light emitting element and the lens in each pair varies according to a position on the board in which the corresponding light emitting element is disposed.
Abstract:
An apparatus for optically inspecting an at least partially reflecting surface of an object includes first and second transverse carriers (12, 14) defining respective substantially circular segment-shaped cutouts (32). The transverse carriers (12, 14) are disposed at a longitudinal distance (D) from one another and the longitudinal distance (D) defines a longitudinal direction (17). A plurality of longitudinal members are configured to hold the first and second transverse carriers at the longitudinal distance (D). The longitudinal members are arranged at a defined radial distance to the circular segment-shaped cutouts. A translucent diffusing screen is held in the circular segment-shaped cutouts by the transverse carriers to form a tunnel-shaped inspection space. A multiplicity of light sources are arranged outside of the tunnel-shaped inspection space behind the diffusing screen. The light sources are configured to be controlled individually or in small groups to generate variable light-dark patterns on the diffusing screen. A workpiece receptacle is configured for accommodating the object in the tunnel-shaped inspection space. At least one camera is directed into the tunnel-shaped inspection space. An evaluation and control unit is configured to control the light sources and the camera to generate various light-dark patterns on the diffusing screen and to record and evaluate a plurality of images of the object in dependence on the light-dark patterns.
Abstract:
The present invention relates to a method for easily manufacturing an illumination device in which a surface mount chip-type LED is used, and a wiring board is formed into a truncated conical or another shape. The method includes, in a flexible strip-like wiring board having a partial ring or a linear shape, providing a through-hole T for filling with solder paste S at a wiring end portion L to be connected with a terminal of an LED, temporarily fixing the LED with bond B onto the wiring board held in a plate-like state, filling the through-hole T with the solder paste S from a back surface of the wiring board, rounding the wiring board mounted with the LED into a truncated conical or cylindrical shape, and reflowing the wiring board in the rounded state to solder the LED.
Abstract:
An apparatus and method are provided for creating an image of a microarray. The apparatus includes at least one light source configured to direct light toward the microarray. The apparatus includes an excitation filter configured to filter the light into a first frequency band towards dichromatic mirror. The dichromatic mirror reflects light onto the microarray causing the microarray to emit electromagnetic energy. The apparatus includes emission filter configured to filter the electromagnetic energy within a second frequency band. The apparatus further includes an imaging unit having a charged coupled device (CCD), the CCD having an imaging surface masked by a pinhole blind such that when the pinhole blind receives electromagnetic energy from the emission filter, an image is created of the entire microarray.
Abstract:
An illumination mean for the inspection of flat substrates is disclosed. The flat substrate includes an upper edge area, a lower edge area and a front area. The illumination means is formed as an annular segment and comprises an opening into which at least the edge area of the flat substrate extends. A plurality of light sources are arranged on an annular segment in a housing. Inside the housing, a reflective element is provided so that the light from the light sources does not impinge perpendicularly on the upper edge area, the lower edge area and the front area of the flat substrate.
Abstract:
A system and method for inspecting a workpiece are provided. According to one embodiment, the system includes a plurality of illumination sources positioned proximate to the workpiece and each operable to generate at least one respective illumination beam to illuminate at least a portion of the workpiece, wherein each beam has a different respective color. The system also includes at least one camera positioned proximate to the workpiece and operable to capture at least one image of at least a portion of the workpiece including the illumination beams incident thereon. In addition, the system includes a data system capable of providing simultaneous two-dimensional and three-dimensional information indicative of the workpiece based on the image acquired by the camera.
Abstract:
A machine for inspecting a container which is being conveyed along a linear path. The machine has cabinets situated in front of the conveyor path at either side of a central open area in front of the conveyor path which is to be used by an operator for servicing the conveyor. The interior sides of these cabinets are open for access to electronics and the central opening is closed by a pair of doors which are releasably attached to the sides of the cabinets and can be push in to provide access to the central area and can be pulled from the cabinets to provide access to electronics through the open sides of the cabinets.