Abstract:
A cholesteric liquid crystal polarizing device includes a substrate, an alignment layer, and a cholesteric liquid crystal layer including multiple domains, each of said domains skewed at an angle relative to a plane parallel to said substrate. The device may be used in combination with a liquid crystal cell to fabricate a reflective liquid crystal display (LCD). In various embodiments, the reflective LCD may be a normally white mode or normally black mode device. In another variation, the liquid crystal cell may include a 90null twisted nematic liquid crystal.
Abstract:
A channel-obtaining device takes the desired channel and uses a resonant semiconductor device to mix the channel to a different frequency. The dropped channel is sufficiently removed from the other channels in frequency that it can be effectively separated.
Abstract:
A variable index distributed mirror is disclosed used for high resolution reflective displays that are thin and have high resolution, reflectivity and contrast; wide viewing angle; low power consumption; and low voltage operation. The mirror is electrically switchable or variable between substantially transparent and reflective states. The mirror has alternating layers of a first material having a fixed refractive index, and a second material having a variable refractive index. The second material may be a nematic liquid crystal. The alternating layers are located between a pair of electrodes. The variable refractive index approximately equals the fixed refractive index in the transparent state and differs from the fixed refractive index in the reflective state. The variable refractive index varies in response to a signal applied across the electrodes. The mirror is tuned to a particular color to form a monochrome display. Three such mirrors, each individually driven and tuned to different colors, form a color display. For a black and white monochrome display, the three mirrors are driven collectively.
Abstract:
A combined bipolar junction transistor and an optical modulator comprising a plurality of semiconductor layers providing an optical mirror for the modulator, a collector for the transistor formed upon the plurality of semiconductor layers, the collector also forming an optical absorber of the modulator, a base of the transistor formed upon the collector, an emitter of the transistor formed upon the base and a metallic contact for the base, the metallic contact providing a function of an optical reflector for the modulator.
Abstract:
A color conversion assembly, a display panel and a manufacturing method for the color conversion assembly. The color conversion assembly includes: a color conversion layer comprising isolation structures, a plurality of accommodating spaces enclosed by the isolation structures, openings in communication with the respective accommodating spaces, and light conversion units arranged in at least some of the accommodating spaces; and a Bragg filter layer comprising curved filters corresponding to the light conversion units. The curved filters are bent in a direction away from the light conversion units.
Abstract:
An optoelectronic device includes an optical waveguide disposed on a substrate. A pair of Bragg reflectors is formed in the optical waveguide to define a resonant cavity between the Bragg reflectors. A piezoelectric material is disposed on the substrate in proximity to the optical waveguide. Electrodes are configured to apply an electric field to the piezoelectric material so as to tune a wavelength of light emitted from the resonant cavity.
Abstract:
A display device may have a reduced thickness while having enhanced color reproducibility by having an improved structure. The display device may include: a liquid crystal panel; a light source plate which is arranged at the rear of the liquid crystal panel to provide light to the liquid crystal panel, and which includes a printed circuit board and an LED chip mounted on the printed circuit board; and a chip cover which is provided to cover a light-emitting surface of the LED chip, and which changes the wavelength of the light emitted from the LED chip, wherein the chip cover includes: a cover layer having a first surface arranged to face the light-emitting surface of the LED chip, a second surface opposite to the first surface, and an accommodating groove provided on the second surface; a light conversion member which changes the wavelength of the light emitted from the LED chip, and which is accommodated in the accommodating groove; and a barrier layer for covering the second surface to cover the light conversion member from the outside.
Abstract:
Provided a light modulating device including a variable mirror including a plurality of lattice structures, the plurality of lattice structures including a material having a refractive index that changes based on a temperature of the material, a distributed Bragg mirror spaced apart from the variable mirror and provided above the variable mirror, the distributed Bragg mirror including a first material layer and a second material layer that are alternately stacked, and a refractive index of the first material layer being different from a refractive index of the second material layer, and a heating portion configured to heat the plurality of lattice structures and provided below the variable mirror opposite to the distributed Bragg mirror.
Abstract:
Electrochromic devices with reflective structure and related manufacturing methods are provided. One of the electrochromic devices includes a bottom electrode layer, an electrochromic layer on the bottom electrode layer, an electrolyte layer on the electrochromic layer, a charge storage layer on the electrolyte layer, and a top electrode on the charge storage layer. The transmittance of the electrochromic device changes in response to a voltage applied between the bottom electrode layer and the top electrode layer. One of the bottom and the top electrode layers is a reflective conductive layer, while the other being a transparent conductive layer. This electrochromic device has a simplified structure due to the removal of a separated reflective film, which also results in simplified manufacturing process.
Abstract:
Electrochromic devices with reflective structure and related manufacturing methods are provided. One of the electrochromic devices includes a bottom electrode layer, an electrochromic layer on the bottom electrode layer, an electrolyte layer on the electrochromic layer, a charge storage layer on the electrolyte layer, and a top electrode on the charge storage layer. The transmittance of the electrochromic device changes in response to a voltage applied between the bottom electrode layer and the top electrode layer. One of the bottom and the top electrode layers is a reflective conductive layer, while the other being a transparent conductive layer. This electrochromic device has a simplified structure due to the removal of a separated reflective film, which also results in simplified manufacturing process.