Abstract:
Disclosed herein is an electronic device that includes a peak detection circuit configured to receive a mirror sense signal from an oscillating mirror and to generate peak information for a mirror period as a function thereof. The electronic device includes a mirror control circuit that estimates an opening angle of the oscillating mirror as a function of the peak information, generates a control signal for the oscillating mirror as a function of the estimated opening angle, and resets the peak detection circuit at an end of the mirror period.
Abstract:
A color calibration device for a laser scanning apparatus includes a compensation unit configured to electronically compensate for positional errors of the three-color laser source. The compensation unit includes an emitted light detector configured to measure a power of an emitted light beam. A calibration unit coupled to the emitted light detector has a controller configured to generate a quantity correction value for the three-color laser source. A laser source control element is configured to generate a control quantity for the three-color laser source, based on the quantity correction value. A dominant color detector is configured to detect any dominant color in the light beam being projected and actuate the controller for the dominant color.
Abstract:
The method for controlling an angular position of a MEMS mirror, includes: applying a first driving moment to the MEMS mirror to generate a rotational scanning movement of the mirror; and, at a zooming instant, applying a second driving moment to the MEMS mirror, wherein the second driving moment is equal to the first driving moment plus an extra moment. The extra moment may be a DC offset. After a transient period of time from zooming instant, a third driving moment M2=k{dot over (θ)}2t is applied. The first and third driving moment are variable linearly with time. The driving moments are applied to torsional springs of the mirror.
Abstract:
A method for testing a strip of MEMS devices, the MEMS devices including at least a respective die of semiconductor material coupled to an internal surface of a common substrate and covered by a protection material; the method envisages: detecting electrical values generated by the MEMS devices in response to at least a testing stimulus; and, before the step of detecting, at least partially separating contiguous MEMS devices in the strip. The step of separating includes defining a separation trench between the contiguous MEMS devices, the separation trench extending through the whole thickness of the protection material and through a surface portion of the substrate, starting from the internal surface of the substrate.
Abstract:
A packaged MEMS device, wherein at least two support structures are stacked on each other and are formed both by a support layer and a wall layer coupled to each other and delimiting a respective chamber. The chamber of the first support structure is upwardly delimited by the support layer of the second support structure. A first and a second dice are accommodated in a respective chamber, carried by the respective support layer of the first support structure. The support layer of the second support structure has a through hole allowing wire connections to directly couple the first and the second dice. A lid substrate, coupled to the second support structure, closes the chamber of the second support structure.
Abstract:
A method of mounting an electronic component having at least one contact extending across a part of its undersurface may include providing a support smaller in area than the undersurface of the component and having a contact pad for connection to the contact. The contact pad may have a first portion extending across an upper surface of the support adjacent one edge and a second portion extending from the edge across a side surface of the support. The method may also include positioning the electronic component and the support with the undersurface of the component adjacent the upper surface of the support. This is done so that the first portion of the contact pad is aligned with and spaced apart from a first portion of the contact, and the second portion of the contact pad is aligned with and disposed inwardly of a second portion of the contact.
Abstract:
A solid state image sensor may include a pixel array of an active pixel type including three transistors and a photodiode for each pixel. Pixel reset values may be read out one row at a time and stored in a frame store. Pixel signal values may also be read out a row at a time. The stored reset values may be subtracted, for example, by a read/write/modify circuit to remove kTC noise. The readout of the reset and signal values may be interleaved, and the offset between read and reset for each row may be selected to control frame exposure.
Abstract:
A method is for generating a key from the fixed pattern noise (FPN) of a CMOS image sensor to be used in generating a digital authentication signature. The key may be generated by temporarily disabling the FPN cancellation circuit that is conventionally included in the system, and generating a substantially nullblacknull image to produce a digitized FPN signal. The key may then be generated from characteristics of the FPN, such as by comparing pairs of pixels, for example.
Abstract:
A look-up table circuit includes address decoder circuitry that includes circuitry for utilizing the address decoder circuitry for producing secondary functions concurrently with operation of the address decoding operations. This eliminates or reduces secondary functions.
Abstract:
A high bit density, high speed, via and metal BE type programmable ROM core cell architecture for storing large amounts of non-volatile data and having a relatively fast turn around time is provided. The ROM core cell may include memory cells organized in rows and columns where each of the memory cells includes three transistors and two bit lines. The arrangement between the three transistors and two bit lines may be such that each of the memory cells is capable of storing four bits of data.