Abstract:
본 발명은 고압선 점검용 무인비행체 및 그 제어방법에 관한 것이다. 본 발명에 따른 고압선 점검용 무인비행체는 본체부(100); 상기 본체부(100)에 장착된 복수의 회전날개부(200); 상기 본체부(100)에 장착되어, 착륙시 상기 본체부(100)를 지지하는 지지부(300); 및 상기 본체부(100)에 장착되어, 상기 본체부(100)가 고압선(H)으로부터 일정 거리 이상 이탈되는 것을 방지하도록 상기 고압선(H)에 안착가능한 고압선 안착부(400);를 포함한다. 본 발명에 따르면, 무인비행체가 고압선에 안착된 상태로 비행하므로, 돌풍 또는 고압선과의 충돌에 따른 추락, 파손의 위험을 방지할 수 있다.
Abstract:
An unmanned aerial system (UAS) may comprise an unmanned aerial vehicle (UAV) configured to display advertising. The UAV may include a connector configured to attach to a display screen. The display screen may be configured to receive data from the UAV and display a message based on the data. The UAS may be controlled by a remote control, which may command the UAV to display a specific message. The remote control may control the flight of the UAV as well as the functionality of the one or more components. The components attached to the UAV, may include a camera, a robotic arm, or a display screen. The UAS may be configured to, for example, display advertising messages in a predetermined area, display advertising messages in response to the UAV determining a specific event or recognizing a specific person, and/or launch fireworks.
Abstract:
A system and method for repowering an unmanned aircraft system is disclosed. The system and method may comprise use of a utility transmission system configured to function as power system/source for UAV/aircraft and UAV/aircraft configured to interface with the power source/system. Systems and methods provide access and for administrating, managing, and monitoring access and interfacing by UAV/aircraft with the power system/source. UAV/aircraft system can be configured and operated/managed to interface with and use the power system/source (e.g. network of power lines from a utility transmission system) to enhance range and utility (e.g. for repowering and/or as a flyway or route). The system comprises an interface between the aircraft and the power source for power transfer; a monitoring system to monitor the aircraft; and an administrative/management system to manage interaction/transaction with the aircraft. The power source for power transfer may be a power line; power transfer to the aircraft may be by wireless power transfer (capacitive or inductive or optical) of an aircraft while at or operating along the power line. The aircraft may comprise a connector configured to interface with the power source/line; the power line may be configured to interface with the connector/aircraft. Data communications between the aircraft and system may be facilitated for interaction/transaction.
Abstract:
A vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV) system including: a rearward facing tang 216 extending from a rear fuselage portion 218 of a VTOL UAV 102, one or more metallic contacts 224 disposed on an exterior surface of the tang 216, a UAV pod 108 including a landing surface 104; and an opening 105 disposed in the landing surface 104 to receive the tang 216.
Abstract:
Methods and configurations are disclosed for DNV application in rapid and cost-effective inspection of power transmission and power distribution lines.
Abstract:
A computer-implemented method of communicating with an unmanned aerial vehicle includes transmitting a first message via a communications transmitter of a lighting assembly for receipt by an unmanned aerial vehicle. The first message includes an identifier associated with the lighting assembly, and the lighting assembly is located within a proximity of a roadway. The method also includes receiving a second message from the unmanned aerial vehicle via a communications receiver of the lighting assembly. The second message includes an identifier associated with the unmanned aerial vehicle. The method further includes transmitting a third message via the communications transmitter of the lighting assembly for receipt by the unmanned aerial vehicle. The third message includes an indication of an altitude at which the unmanned aerial vehicle should fly.