Abstract:
A launch system in which an unmanned aerial vehicle is secured to a platform in a watertight tube adapted to be launched from a submerged platform. Once launched, side panels on the tube are jettisoned and a flotation device is deployed to bring the tube to the surface. The flotation device maintains the tube in a vertical position when rising to and at the surface. After surfacing, a top-sealing cap of the tube is opened. A lifting mechanism within the tube raises the vertically oriented platform assembly up within the tube. Guide rails maintain the vertical orientation of the assembly during lifting. At the topmost point of travel, the assembly is raised clear of the tube and is disengaged from the guide rails, allowing the assembly to pivot about its attachment to the lifting mechanism and assume an orientation favorable for launching the UAV.
Abstract:
An un-manned airborne vehicle (UAV), for acquiring aeromagnetic data for geophysical surveying at low altitude on land or over water, comprising an extended fuselage that is adapted to hold and maintain magnetometer and a magnetic compensation magnetometer at a minimum distance from the avionics and propulsion systems of the UAV. The magnetometer measures magnetic anomalies and the magnetic compensation magnetometer measures magnetic responses corresponding to the pitch, yaw and roll of the UAV. A data acquisition system stores and removes the magnetic response measurements from the magnetic anomaly measurements. The data acquisition system also stores a survey flight plan and transmits the same to the avionics system. The generator of the UAV is shielded and the propulsion system is stabilized to reduce magnetic and vibrational noises that can interfere with the operation of the magnetometer.
Abstract:
A launch system is provided in which an unmanned aerial vehicle is secured to a platform in a watertight tube adapted to be launched from a submerged platform. Once launched, side panels on the tube are jettisoned and a flotation device is deployed to bring the tube to the surface. The flotation device maintains the tube in a vertical position when rising to and at the surface. After surfacing, a top-sealing cap of the tube is opened. A lifting mechanism within the tube raises the vertically oriented platform assembly up within the tube. Guide rails maintain the vertical orientation of the assembly during lifting. At the topmost point of travel, the assembly is raised clear of the tube and is disengaged from the guide rails, allowing the assembly to pivot about its attachment to the lifting mechanism and assume an orientation favorable for launching the UAV.
Abstract:
A method of launching and retrieving a UAV (Unmanned Aerial Vehicle) (10). The preferred method of launch involves carrying the UAV (10) up to altitude using a parasail (8) similar to that used to carry tourists aloft. The UAV is dropped and picks up enough airspeed in the dive to perform a pull-up into level controlled flight. The preferred method of recovery is for the UAV to fly into and latch onto the parasail tow line (4) or cables hanging off the tow line and then be winched back down to the boat (2).
Abstract:
Methods and apparatuses for launching unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be launched from an apparatus that includes a launch carriage that moves along a launch guide. The carriage can accelerate when portions of the carriage and/or the launch guide move relative to each other. A gripper carried by the launch carriage can have at least one grip portion in contact with the aircraft while the launch carriage accelerates along the launch axis. The at least one grip portion can move out of contact with the aircraft as the launch carriage decelerates, releasing the aircraft for takeoff. A brake can arrest the motion of the gripper after launch.
Abstract:
Two embodiments of a connector that can be mated without regard for its orientation are disclosed. One embodiment is mated and demated autonomously as part of a system for recovering, docking with, recharging and re-launching unmanned aerial vehicles. Another embodiment is employed on the decks of vessels to facilitate mating and demating of various equipment providing different functions to reconfigure the vessel. Because both embodiments are configured for connection irrespective of angular orientation over 360°, they are especially suited for harsh environments including autonomous operation, rough seas, darkness and the like.
Abstract:
Methods and apparatuses for launching unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be launched from an apparatus that operates with a wedge action. A launch carriage carrying an unmanned aircraft is positioned on first and second launch members. At least one of the launch members moves relative to the other from a first position to a second position, causing the launch carriage to move from a first launch carriage position to a second launch carriage position. As the launch carriage moves, it accelerates the aircraft and releases the aircraft for takeoff.
Abstract:
A hollow elliptical-cylindrical hull conformingly houses a hollow rectangular-prismatic cabin whereby the four longitudinal parallel outside edges of the latter make contact with the inside surface of the former. The fully constructed aircraft (either non-powered or powered) includes the integral hull-plus-cabin structure along with nose, tail and airfoil structures that are coupled therewith. The cabin conformingly accommodates hollow rectangular-prismatic modules useful for cargo storage. While the nose and/or tail structure is uncoupled from the integral hull-plus-cabin structure, the modules are inserted into the cabin and the cabin is sealed. The aircraft is lifted (e.g., via airplane, helicopter, rocket or balloon) to a particular elevation and released, whereupon the two wings fully emerge and the aircraft effects controlled flight until reaching its destination. After landing, the nose and/or tail structure is uncoupled from the integral hull-plus-cabin structure, the cabin is unsealed, and the modules are removed from the cabin.
Abstract:
A sea-launched and recovered unmanned aircraft is disclosed. The aircraft is jet-powered and has features and systems to maintain watertight integrity such that it may be released from a submerged submarine or dropped into a body of water by a ship or an aircraft. The aircraft is buoyant and remains at or near the water surface before its rockets are ignited. The rockets propel the air vehicle out of the sea and accelerate it to flying speed at which time a jet engine is started and the rockets are jettisoned. The air vehicle performs its mission independently or in conjunction with other ones of the air vehicles. The air vehicle then returns to an assigned splashdown point at sea via, for example, an engine-off “whip-stall” maneuver. A submarine or ship may retrieve the air vehicle and readies it for another mission.
Abstract:
Methods and apparatuses for cable launching airborne devices (e.g., unmanned aircraft) are disclosed. In one embodiment, an apparatus includes an elongated structure, e.g., a tower, boom or derrick. At least one flexible elongated member (e.g., a cable or rope) can be attached toward one end to the structure and toward another end to the ground or another structure to form an elongated launch path. A cradle, which can carry the airborne device, can also be movably attached to the flexible elongated member and can be accelerated along the launch path. As the cradle decelerates, the aircraft can be released into flight.