Abstract:
The present invention relates to an aircraft comprising a fuselage (100) comprising a fuselage axis (101), a first wing arrangement (110) and a second wing arrangement (120). The first wing arrangement (110) is mounted to the fuselage (100) such that the first wing arrangement (110) is tiltable around a first longitudinal wing axis (111) of the first wing arrangement (110) and such that the first wing arrangement (110) is rotatable around the fuselage axis (101). The second wing arrangement (120) comprises at least one propulsion unit (122), wherein the second wing arrangement (120) is mounted to the fuselage (100) such that the second wing arrangement (120) is tiltable around a second longitudinal wing axis (121) of the second wing arrangement (120) and such that the second wing arrangement (120) is rotatable around the fuselage axis (101). The first wing arrangement (110) and the second wing arrangement (120) are adapted in such a way that, in a fixed-wing flight mode, the first wing arrangement (110) and the second wing arrangement (120) do not rotate around the fuselage axis (101). The first wing arrangement (110) and the second wing arrangement (120) are further adapted in such a way that, in a hover flight mode, the first wing arrangement (110) and the second wing arrangement (120) are tilted around the respective first longitudinal wing axis (111) and the respective second longitudinal wing axis (121) with respect to its orientations in the fixed-wing flight mode and that the first wing arrangement (110) and the second wing arrangement (120) rotate around the fuselage axis (101).
Abstract:
Die Erfindung betrifft ein Verriegelungssystem, insbesondere für Komponenten eines Hubschraubers, das Folgendes aufweist: ein Zentralteil (10) mit mehreren Anschlagselementen (11); zwei oder mehr Ausleger (20), die an dem Zentralteil angelenkt oder mit diesem lösbar verbunden sind; ein in den Zentralteil zumindest teilweise einführbares und von diesem lösbares Verschlussteil (30), wobei Zentralteil und Verschlussteil derart geformt sind, dass bei einer Dreh- und/oder Verschiebebewegung die beiden Teile und die Ausleger mechanisch derart ineinander greifen, dass der Ausleger zwischen dem Anschlagelement des Zentralteils und dem Verschlussteil arretiert werden kann.
Abstract:
A guided fire-retardant-containing bomb comprises a container with retractable wings, tail and elevators having the form factor of a conventional release vehicle, where the control surfaces are coupled via a controller to a GPS with inertial guidance control and an ability to receive external instructions, and a charge core to disintegrate and disperse the fire retardant or water.
Abstract:
A reinforced inflatable wing improves the tolerance of the OML and reinforces the wing in at least the high load areas. This approach provides fitment constrained air vehicles with wings having increased surface area to improve flight endurance or aerodynamic control. A wing box (20,108, 208, 308, 400) forms a first portion of the wing. A skin having a plurality of rigid plates (40,122, 222, 322, 406) affixed thereto is inflated to form a second portion of the wing to either increase the chord length or lengthen the wing span. The skin is suitably inflated with foam to form a solid wing.
Abstract:
A dual ducted fan arrangement in which the duct components (203), engine (10), and avionics/payload pods (300, 302) are capable of being quickly disassembled to fit within common backpacking systems. Each duct is identical in fan (201 ), stator (102), and control vane design. Assembly connections between ducted fans (203) and electronic modules are also identical. An engine (10) or APU drives the dual ducted fans (203) through a splined shaft (601) to a differential (600) or through electric motors. Energy is transferred to the ducted fans by a single gear mounted to the stator (102) hub. Relative speeds of the individual ducted fans are controlled through separate frictional or generator load control braking mechanisms (603) on each of the splined shafts (601) between the differential (600) and ducted fans (203). In the electric motor case relative speed is through electronic speed control. The fans (201 ) are counter rotating for torque balancing. The electronic module locations are vertically variable for longitudinal center of gravity for variations in payloads.
Abstract:
A dual ducted fan arrangement in which the duct components (203), engine (10), and avionics/payload pods (300, 302) are capable of being quickly disassembled to fit within common backpacking systems. Each duct is identical in fan (201 ), stator (102), and control vane design. Assembly connections between ducted fans (203) and electronic modules are also identical. An engine (10) or APU drives the dual ducted fans (203) through a splined shaft (601) to a differential (600) or through electric motors. Energy is transferred to the ducted fans by a single gear mounted to the stator (102) hub. Relative speeds of the individual ducted fans are controlled through separate frictional or generator load control braking mechanisms (603) on each of the splined shafts (601) between the differential (600) and ducted fans (203). In the electric motor case relative speed is through electronic speed control. The fans (201 ) are counter rotating for torque balancing. The electronic module locations are vertically variable for longitudinal center of gravity for variations in payloads.
Abstract:
An unmanned flying device including a body; a first blade and at least a second blade; a coupling assembly for coupling the first blade and the at least second blade to the body, wherein the coupling assembly urges the collapsing of the first blade and the at least second blade towards the body; and wherein both the first blade and the at least second blade are rotatable about the body, and wherein the first blade and the at least second blade are deployable away from the body via rotation of the first and the at least second blades about the body.