Abstract:
A method includes recording a primary destination dispatch request from a primary passenger at a first floor position via a destination dispatch controller 115, identifying a terminal floor, providing a terminal floor call signal to the elevator control system via an overlay controller 110, moving an assigned elevator car in a travel direction of the terminal floor, recording at least one secondary destination dispatch request from a secondary passenger at a respective at least one secondary floor position via the destination dispatch controller, approximating a position of the assigned elevator car, determining a target floor position via the destination dispatch controller, entering a target floor call corresponding to the target floor position at a calculated time to stop the assigned elevator car at the target floor position, cancelling all pending calls via the elevator control system 102, and entering at least one recorded destination dispatch request to the elevator control system.
Abstract:
An elevator car dispatching system (100) comprises an elevator control module (102) that controls operation of at least one elevator car. A position monitoring mechanism (104) is coupled to a first elevator car among the at least one elevator car. The position monitoring mechanism (104) is configured to output a position signal in response to movement of the first elevator car. The elevator car dispatching system (100) further comprises an electronic dispatch module (106) that is in electrical communication with the elevator control module (102) and the position monitoring mechanism (104). The dispatch module (106) is configured to determine a vertical position of the first elevator car based on the position signal. The dispatch module (106) is further configured to output a dispatch command signal commanding the elevator control module (102) to adjust operation of the first elevator car based on the vertical position.
Abstract:
A system 110 includes an input/output 113 unit for receiving a user request to call an elevator 101, 102 and a processor 111 for processing the user request to assign an elevator to the user 105. The processor performs one of a first assignment process and a second assignment process. The first assignment process includes determining whether a delay condition exists for delaying assignment of the elevator to the user 202, delaying assignment of the elevator to the user based on determining that the delay condition exists 203, and assigning the elevator to the user based on determining that the delay condition does not exist 204. The second assignment process includes assigning the elevator to the user and notifying the user of the assignment, determining whether an assignment change condition exists 206, changing the assignment to another elevator based on determining that the assignment change condition exists 207, and notifying the user of the assignment change 208.
Abstract:
The invention relates to a method for handling destination calls in an elevator group comprising several elevators using destination call control, which method comprises an allocation procedure for situations where the calls can't be served by all elevators of the elevator group in one round trip, in which situation "n" open calls and "m" fixed calls are present, which fixed calls are already allocated but not served, in which allocation procedure a genetic algorithm (GA) is used in which the following succession of steps is performed: a) chromosomes comprising genes are formed, in which chromosomes: - n first genes comprise a correlation of each open call and a corresponding elevator, - n second genes comprise a correlation of each open call and the corresponding number of the round trip in which the open call will be served, and - m third genes comprise a correlation of each fixed call and the corresponding number of the round trip in which the fixed call will be served, b) for each chromosome round trips are calculated for each elevator of the elevator group according to collective control, c) the round trips of all elevators calculated in step b) are evaluated according to known optimization criteria, as e.g. passenger riding time, passenger waiting time, energy consumption, minimum number of round trips etc., d) chromosomes which are evaluated in step c) as sufficient are put forward to the forming of a new generation by per se known GA methods, as e.g. cross-breeding, mutation, etc., e) the steps b) to d) are repeated for each chromosome of each new generation of chromosomes until a stop criterion is achieved, f) the calls are served in collective control according to the best chromosome of the last generation, and g) the destinations of each elevator in its travelling direction in the current round trip according to the best chromosome are shown on a at least one common display shortly before its arrival at said landing. The invention solves the elevator dispatching problem under consideration of more than the current round trip of the elevators in the elevator group.
Abstract:
A group controller for controlling elevator cars in a building having a plurality of floors includes a traffic and traffic rate estimator for providing fuzzy estimates of traffic and traffic rate; a closed loop fuzzy logic controller for providing a control parameter in response to the fuzzy estimates of traffic and traffic rate and in response to an elevator control system output variable; and an elevator dispatcher for controlling the operation of the elevator cars during single source traffic conditions in response to the control parameter.
Abstract:
An elevator system including a group controller for controlling the dispatching of elevator cars to the lobby. The group controller predicts lobby single source traffic for short periods. When the predicted traffic is below a certain limit, cars are assigned to a lobby hall call on demand after hall call registration. When the predicted traffic is above a certain limit, cars are assigned to the lobby hall call at intervals. Accordingly, car assignment is scheduled at those intervals. The traffic threshold at which the scheduled mode is activated and the traffic threshold at which it is deactivated is learned by the system. The schedule interval is varied based on predicted traffic and predicted round trip time of the cars. The number of cars assigned and sent to the lobby is varied based on predicted traffic. In order to avoid oscillations in selecting the service mode, proper delays are used to activate and deactivate the scheduled service.
Abstract:
A group controller for controlling elevator cars in a building having a plurality of floors includes an elevator dispatcher for controlling the operation of the elevator cars during single source traffic conditions, the elevator dispatcher having a contraint for limiting car assignments in response to the contraint; and an adaptive contraint generator for modifying a value of the contraint in response to an elevator control system output variable. In one embodiment, the group controller includes a traffic and traffic rate estimator for providing fuzzy estimates of traffic and traffic rate; a fuzzy logic controller for providing a control parameter in response to the fuzzy estimates of traffic and traffic rate, the control parameter having a contraint for limiting a value of the control parameter; and adaptive contraint generator for modifying a value of the contraint in response to an elevator control system output variable; and an elevator dispatcher for controlling the operation of the elevator cars during single source traffic conditions in response to the control parameter.
Abstract:
A group controller for controlling elevator cars in a building having a plurality of floors includes a traffic and traffic rate estimator for providing fuzzy estimates of traffic and traffic rate; a closed loop fuzzy logic controller for providing a control parameter in response to the fuzzy estimates of traffic and traffic rate and in response to an elevator control system output variable, the closed loop fuzzy logic controller having membership functions for fuzzy sets of the control parameter; an adaptive controller for modifying the membership functions of the fuzzy sets of the control parameter in response to the elevator control system output variable; and an elevator dispatcher for controlling the operation of the elevator cars during single source traffic conditions in response to the control parameter.
Abstract:
An elevator control system employs a microprocessor-based group controller (17) which communicates with the cars (3, 4) of the elevator system to determine conditions of the cars and responds to hall calls registered at a plurality of landings in the building serviced by the cars under control of the group controller, to provide assignments of calls to cars based on the summation for each car, with respect to each call, a weighted summation of a plurality of system response factors indicative of conditions of the car irrespective of the call to be assigned, and indicative of conditions of the car relative to the call to be assigned, including factors relating to preferring cars which are running, which require motion to provide service already assigned to the car, which do not have lobby calls, which are not positioned at the lobby, which are not full, even though the car may have a car call at the floor of the all call under consideration, which do not have excessive car calls in them, and so forth. Exemplary apparatus and logic flow diagrams are disclosed to illustrate the specific manner of assigning calls to cars in accordance with the invention, and to illustrate the environment in which the invention may be practiced.