Abstract:
An ozone generator utilizes one or more cylindrical anodes having disposed centrally therein an elongated cylindrical dielectric tube. The dielectric tube is filled with an inert gas at low pressure and contains at a first end thereof beyond the encirclement of the anode a relatively short electrode. In a preferred embodiment, the electrode takes the shape of a cone having the small end thereof coupled through the first end of the dielectric envelope to a source of high energy alternating electric power. The large end of the cone is open and directed toward the far end of the dielectric envelope. Electrons are emitted from the electrode and focused down the length of the dielectric envelope, creating an electron haze which induces a variety of electron focusing phenomena in an annular reaction space between the dielectric envelope and the encircling anode. These electron focusing phenomena include a corona on the outside of the dielectric envelope, high voltage spikes between the dielectric envelope and anode, and a virtual plasma filling the annular reaction space. The electron focusing phenomena induce ozone formation when oxygen bearing feed gas is pumped down the length of the reaction space. The exterior of the anode is provided with a water jacket for heat removal. Use of the ozone generator in a water purification system is disclosed for illustrative purposes.
Abstract:
An ozone generator cell of a novel design includes a thin ceramic sheet sandwiched between a perforated metallic sheet serving as discharge electrode and a water-cooled aluminum base. Dry air or oxygen is passed over the electrode surface and a high-voltage, high-frequency electric field is applied between the electrode and the base for a corona discharge.
Abstract:
A corona reaction system of the type wherein substantially all of the heat generated by corona discharge is removed from the system by gas flow therethrough. A corona discharge gas flow path is provided which is between 2.0 and 10 inches in length and bounded by discharge electrodes spaced apart at a distance of between 0.01 and 0.250 inch, whereby low pressure drop over the gas flow path is maintained under conditions of high power density and gas temperature.
Abstract:
A housing has an interior casing receiving a coolant. This casing is associated with a forced cooling system and has open ended tubular portions therethrough formed of electrically conducting metal. Glass ozone generating tubes are removably supported in the tubular portions by axial movement and are held in spaced ozone generating position by spacers on the tubes. The tubes have an electrically conducting silver coating on the interior surface and have an interior band engageable with the coating for admitting high voltage to the tube from a conductor leading into the tube. A treatment tank associated with the ozone generating system has a recirculating conduit operably connected with the housing for the ozone generating tubes. An additional conduit extends from the treatment tank to a storage tank and a filter for filtering out coagulated material is provided in this conduit.
Abstract:
High frequency tubular ozonizer in which one common housing contains several ozonizing elements, each of these elements having a high voltage and a low voltage electrode, both embodied in the form of coaxially disposed pipes coated with a dielectric material on the side of the reaction zone and provided with a circulation cooling liquid. Cooling efficiency is increased by providing a core fitted in the expanded portion of each of the high voltage electrodes, whereas each low voltage electrode is made of two coaxially arranged pipes with the cooling liquid circulating between the pipes. The ends of the high voltage tubular electrodes of the ozonizing elements are secured in the walls of manifolds which serve as admitting and discharging conduits for the cooling liquid. The ozonizer of the invention exhibits increased output of 50-100 times and when so constructed drastically reduces capital investment.
Abstract:
A system for subjecting gas to high voltage corona wherein a gas is sequentially (serially) exposed to a plurality of corona generation zones. In a preferred system, the gas is conducted through several corona generators which are connected in series by gas conduits, and the gas within the system is cooled subsequent to each exposure to corona.
Abstract:
A corona generator is formed of simple, bendable or flexible tubing and includes a plastic dielectric for simplicity and economy. A long length of tubing is formed into a convenient coil, and the tubing is arranged in several combinations including electrodes, plastic dielectric, and a gap where a corona discharge is formed and through which a gas is passed.
Abstract:
Apparatus and method are disclosed for high efficiency electrical conversion of oxygen to ozone. An oxygen-containing gas is passed upwardly through a particulate dielectric contained between spaced electrode surfaces, whereby a fluidized bed is established consisting of a suspension of said dielectric particles in the streaming gas. Means are present for simultaneously maintaining a silent electrical discharge across the spaced electrodes and through the fluidized bed. The bed acts as a highly effective heat sink and also promotes the presence of high-frequency components in the current waves passing between electrodes, as a result of which increased electrical efficiency and increased ozone output is enabled in the conversion process.
Abstract:
A PERIODICALLY REVERSE GAS FLOW METHOD AND APPARTUS FOR OZONE PRODUCTION IS DESCRIBED. BECAUSE MOISTURE REDUCES THE EFFICIENCY OF MOST OZONIZERS, MOISTURE REMOVED FROM AN OXYGEN CONTAINING FLUID BEFORE IT PASSES THROUGH THE OZONOIZER AND THE MOISTURE IN RETURNED TO THE OXYGEN AND OZONE CONTAINING FLUID AFTER THE OZONIZER. AT LEAST TWO MOISTURE ADSORBENT MATERIAL COLUMNS ARE USED SO THAT THE OXYGEN CONTAINING FLUID IS FIRST PASSED SERIALLY THROUGH THE TWO COOLUMS WITH THE OZONIER INTER POSED AND THEN PERIODICALLY REVERSED TO PASS SERIALLY THROUGH THE THREE COMPONETS IN THE OPPOSITE DIRECTION SO THAT AT LEAST ONE COLUMN IS ALWAYS IN AN ADSORBENT CYCLE WHILE AT LEAST ANOTHER COLUMN IS ALWAYS IN A DESORBER CYCLE. THE PRESSURE OF THE OXYGEN CONTAINING FLUID MAY BE INCREASED IMMEDIATELY UPSTREAM OF THE ADSORBER COLUMN AND REDUCED IMMEDIATELY DOWNSTREAM OF THE ADSORBER COLUMN, FOR INCREASED EFFICIENCY. THE HEAT OF ADSORPTION IS TRANSFERRED FROM THE ADSORGER COLUMN TO THE DESORBER COLUMN, WITH THE OZONIZER SERIALLY INTERPOSED; THE COOLANT FLUID FLOW IS PREFFERABLY CO-CURRENT TO THE OXYGEN FLUID FLOW AND REVERSED EVERYTIME THAT THE OXYGEN CONTAINING FLUID FLOW IS REVERSED.