Abstract:
In an ozone generating system in which an intermittent operation is performed, in which an ozone generating operation period in which ozone is generated by discharging gas which contains oxygen in a discharge space of an ozone generating apparatus and an ozone generating operation standby period in which gas is sealed in an ozone generating apparatus and discharge is stopped so as not to generate ozone are performed repeatedly, an absorbent which absorbs at least one of nitric acid and nitrogen oxide is provided in an ozone generating apparatus other than the discharge space.
Abstract:
A system for sanitizing and deodorizing garbage chutes using methane sensors in the trash chute that includes an ozone generating unit at the bottom of the trash chute. The system can include an ozone sensor as a safety device to ensure that ozone levels do not surpass a predetermined amount. The present invention works with a controller that controls the ozone generator based on a schedule program for a predetermined time of day. The present invention in an embodiment can include a plurality of additional sensors such as airflow detectors, occupancy detectors and the like.
Abstract:
A current-limiting reactor that regulates a short-circuit current, a controller that controls an action of an inverter, and a detection unit that detects a short circuit. The controller causes the inverter to stop when a short circuit has occurred.
Abstract:
A system for performing ozone water treatment comprises a voltage supply circuit and a plasma eductor reactor. The voltage supply circuit includes an H-bridge controller and driver, a transformer, and an output port. The H-bridge controller and driver are configured to switch the electrical polarity of a pair of terminals. A primary of the transformer is connected to the H-bridge driver and controller. A secondary of the transformer connects in parallel with a first capacitor and in series with an inductor and a second capacitor. The output port connects in parallel with the second capacitor. The plasma eductor reactor includes an electric field generator, a flow spreader, and a diffuser. The electric field generator includes a pair of electrodes that generate an electric field. The flow spreader supplies a stream of oxygen. The diffuser supplies a stream of water. The streams of water and oxygen pass through the electric field.
Abstract:
Improvements in the supply of high-frequency electrical power to ozone-producing cells can be accomplished using the systems and techniques described herein. Application of a DC-DC converter operating at a switching frequency substantially greater than a load frequency, supports generation of a high-voltage AC for powering such cells, while allowing for reductions in component size and reductions in a quality factor of a load tuning circuit. Controllable power inverters used in obtaining one or more of the switching and load frequencies can be controlled using feedback techniques to provide stable, high-quality power to ozone-producing cells under variations in one or more of externally supplied power and load conditions. An inrush protection circuit can also be provided to selectively introduce a current-limiting resistance until an input DC bus has been sufficiently initialized as determined by measurements obtained from the DC bus. The current limiting resistance can be a positive-temperature coefficient thermistor.
Abstract:
An ozone generation system comprises an electricity charge unit price storing part which stores an electricity charge unit and a gas charge unit price storing part which stores a gas charge unit price, based on the electricity charge unit price, the gas charge unit price and necessary generation amount of ozone which is required for an ozonized gas, regarding an ozone concentration and a gas flow rate which are ozone generation amount basic parameters, values at which a running cost is a minimum are determined, a gas flow rate controller is controlled so as for a gas flow rate to be the determined gas flow rate and power of a power supply for an ozone generator is controlled so as for an ozone concentration to be the determined ozone concentration.
Abstract:
In the present invention, a gas pipe integrated block has a plurality of internal pipe paths. The plurality of internal pipe paths are connected to an ozone generator, control means, a raw gas supply port, an ozone gas output port, and cooling water inlet/outlet ports, to thereby form a unit in which a raw gas input pipe path and an ozone gas output pipe path are integrated. The raw gas input pipe path extends from the raw gas supply port through an automatic pressure controller to the ozone generator. The ozone gas output pipe path extends from the ozone generator through a gas filter, an ozone concentration meter, and a flow rate controller, to the ozone gas output port.
Abstract:
In the present invention, a gas pipe integrated block has a plurality of internal pipe paths. The plurality of internal pipe paths are connected to an ozone generator, control means, a raw gas supply port, an ozone gas output port, and cooling water inlet/outlet ports, to thereby form a unit in which a raw gas input pipe path and an ozone gas output pipe path are integrated. The raw gas input pipe path extends from the raw gas supply port through an automatic pressure controller to the ozone generator. The ozone gas output pipe path extends from the ozone generator through a gas filter, an ozone concentration meter, and a flow rate controller, to the ozone gas output port.
Abstract:
A method for generating a non-thermal plasma having predetermined ozone concentration includes: providing an at least approximately closed volume as a reaction region; activating a plasma source and generating a non-thermal plasma in the reaction region. The plasma is held in the reaction region at least until a predetermined ozone concentration is reached or the ozone concentration falls below a predetermined upper limit for the ozone concentration.
Abstract:
In the present invention, a gas pipe integrated block has a plurality of internal pipe paths. The plurality of internal pipe paths are connected to an ozone generator, control means, a raw gas supply port, an ozone gas output port, and cooling water inlet/outlet ports, to thereby form a unit in which a raw gas input pipe path and an ozone gas output pipe path are integrated. The raw gas input pipe path extends from the raw gas supply port through an automatic pressure controller to the ozone generator. The ozone gas output pipe path extends from the ozone generator through a gas filter, an ozone concentration meter, and a flow rate controller, to the ozone gas output port.