Abstract:
A wiring substrate includes an electrode including Cu or a Cu alloy, and a plated film including an electroless nickel-plated layer formed on the electrode and an electroless gold-plated layer formed on the electroless nickel-plated layer. The electroless nickel-plated layer is formed by co-precipitation of Ni, P, Bi, and S, the electroless nickel-plated layer includes a content of P of 5% by mass or more and less than 10% by mass, a content of Bi of 1 ppm by mass to 1,000 ppm by mass, and a content of S of 1 ppm by mass to 2,000 ppm by mass, and a mass ratio of the content of S to the content of Bi (S/Bi) is more than 1.0.
Abstract:
An ink composition and a circuit board and a method for producing the same are provided. The ink composition comprises: an acrylic resin; an epoxy resin; a polyester resin; a curing agent; and an active powder comprising a modified metal compound, in which the metal element of the modified metal compound is at least one selected from the group consisting of Zn, Cr, Co, Cu, Mn, Mo, and Ni.
Abstract:
Rosin-free thermosetting flux formulations for enhancing the mechanical reliability of solder joints. In accordance with one or more aspects, a solder paste as shown and described herein imparts improved or enhanced solder joint properties relating to at least one of drop shock, thermal cycling, thermal shock, shear strength, flexural strength performance, and/or other thermal-mechanical performance attributes.
Abstract:
A methodology for a thin, flexible substrate having integrated passive circuit elements, and the resulting device are disclosed. Embodiments may include integrating one or more passive circuit components on a first or second surface of a substrate, and interconnecting one or more integrated circuit (IC) dies on a second surface of the interposer to the one or more passive circuit components with one or more metal-filled vias between the first and second surfaces, the first and second surfaces being opposite surfaces of the substrate.
Abstract:
In a semi-finished product for the production of a printed circuit board, the semi-finished product comprising a plurality of having multiple insulating layers of a prepreg material and conductive layers (2, 2′) of a conductive material and further comprising having at least one electronic component embedded in at least one insulating layer the at least one electronic component is attached to a corresponding conductive layer by the aid of an Anisotropic Conductive Film and the Anisotropic Conductive Film as well as the prepreg material are in an unprocessed state. The method for producing a printed circuit board comprises the following steps: Providing at least one conductive layer (2), Applying an Anisotropic Conductive Film on the conductive layer, Affixing at least one electronic component on the Anisotropic Conductive Film, Embedding the electronic component in at least one insulating layer of prepreg material to obtain a semi-finished product, Laminating the semi-finished product to process the prepreg material and the Anisotropic Conductive Film.
Abstract:
Conductive articles and devices have conductive micro-wires formed by curing a photocurable layer on a transparent flexible substrate that has a distortion temperature of less than 150° C. The photocurable layer has a viscosity
Abstract:
The present invention provides a silver powder that has an appropriate viscosity range at the time of paste production, can be easily kneaded, and prevents flake occurrence. The silver powder has a dibutyl phthalate absorption amount, measured by a method of JIS-K6217-4, of 7.0 to 9.5 ml/100 g, and has an oil absorption profile at the time of measurement of the absorption amount, having two peaks, or one peak having a half width of not more than 1.5 ml/100 g.
Abstract:
The invention relates to a metal-ceramic substrate and to a method for the production thereof, the substrate including at least one ceramic layer having first and second surface sides, at least one of the surface sides of which is provided with a metallisation, wherein the ceramic material forming the ceramic layer contains aluminium oxide, zirconium dioxide and yttrium oxide. The ceramic layer contains aluminium oxide, zirconium dioxide and yttrium oxide in the following proportions, in each case in relation to the total weight thereof: zirconium dioxide between 2 and 15 percent by weight; yttrium oxide between 0.01 and 1 percent by weight; and aluminium oxide between 84 and 97 percent by weight, wherein the average grain size of the aluminium oxide used is between 2 and 8 micrometres and the ratio of the length of the grain boundaries of the aluminium oxide grains to the total length of all the grain boundaries is greater than 0.6
Abstract:
The present invention provides a carrier-attached copper foil, wherein an ultrathin copper foil is not peeled from the carrier prior to the lamination to an insulating substrate, but can be peeled from the carrier after the lamination to the insulating substrate. A carrier-attached copper foil comprising a copper foil carrier, an intermediate layer laminated on the copper foil carrier, and an ultrathin copper layer laminated on the intermediate layer, wherein the intermediate foil is configured with a Ni layer in contact with an interface of the copper foil carrier and a Cr layer in contact with an interface of the ultrathin copper layer, said Ni layer containing 1,000-40,000 μg/dm2 of Ni and said Cr layer containing 10-100 μg/dm2 of Cr is provided.
Abstract:
An object of the present invention is to improve the laser drilling performance of a copper clad laminate whose black-oxide treated surface is used as a laser drilled surface. To achieve the object, a copper foil provided with a carrier foil comprising a layer structure of the carrier foil/the releasing layer/the bulk copper layer characterized in that metal element-containing particles are disposed between the releasing layer and the bulk copper layer is employed. If the present copper foil provided with a carrier foil is used, a black-oxide treated layer having a color tone excellent in the laser drilling performance can be formed on the surface of the bulk copper layer in the copper clad laminate manufactured.