Abstract:
The invention provides a process for the production of crystalline ammonium sulfate, wherein the process comprises performing a Beckmann rearrangement reaction, neutralizing the Beckmann rearrangement reaction mixture, separating a first aqueous ammonium sulfate phase and an aqueous ε-caprolactam phase, charging the first ammonium sulfate phase to a first evaporative type crystallization section wherein crystalline ammonium sulfate is obtained, discharging from the first evaporative type crystallization section mother liquor enriched in organic components, extracting the aqueous ε-caprolactam phase to obtain an extracted ε-caprolactam phase and a second aqueous ammonium sulfate phase, discharging the mother liquor that is discharged from the first evaporative type crystallization section and/or the second aqueous ammonium sulfate phase to a second evaporative type crystallization section wherein evaporative type crystallization is performed so that a three-phase system occurs. At least a liquid oily phase is recovered from the three-phase system. The invention further provides a plant suitable to carry out the process of the invention, crystalline ammonium sulfate and a liquid oily phase obtained by the process of the invention.
Abstract:
The present invention relates to a process for purifying caprolactam from solutions of crude caprolactam by a direct treatment with one or more alkaline compounds of polyvalent metals, preferably bivalent and trivalent, without resorting to organic solvent extraction as used in the usual purification process. A further subject of the present invention is a facility devoid of a unit for organic solvent extraction and designed to carry out the caprolactam purification process described herein.
Abstract:
The present invention relates to a process for purifying caprolactam from solutions of cmde caprolactam by a direct treatment with one or more alkaline compounds of polyvalent metals, preferably bivalent and trivalent, without resorting to organic solvent extraction as used in the usual purification process. A further subject of the present invention is a facility devoid of a unit for organic solvent extraction and designed to carry out the caprolactam purification process described herein.
Abstract:
The substituted naphthyridinyl hydrazine compounds as anti-liver cancer agents are anti-liver cancer agents that inhibit proliferative pathways of cancer cells, thereby exhibiting potent in vitro and in vivo anticancer activity. The compounds have the formula: wherein R1 and R2 each are selected independently from hydrogen, mercapto, and C1-C5-alkyl, preferably methyl, ethyl, propyl, isopropyl or halogen; R3 and R4 each are selected independently from hydrogen, alkyl or halogen; and R5 is selected from substituted or unsubstituted aryl, more preferably from substituted phenyl, naphthyl, and substituted or unsubstituted heteroaryl, more preferably from furyl, pyrrolyl, thienyl, imidazolyl, thiadiazolyl, pyridinyl, pyridazinyl, pyrimidinyl, benzothiazolyl, oxadiazolyl or sugar moities. These agents exert their action through topoisomerase II inhibition.
Abstract:
Cyclododecanone (CDON) is prepared by epoxidizing cyclododecene (CDEN) to epoxycyclododecane (CDAN epoxide), and rearranging the CDAN epoxide to CDON to obtain a mixture comprising said CDON and cyclododecane (CDAN), wherein CDAN is separated from the CDON-containing mixture and oxidized to CDON.
Abstract:
Organic compounds are selectively oxidized by means of a particularly advantageous process, using elemental oxygen and a catalyst containing palladium and copper and carrying out the process in the presence of carbon monoxide.
Abstract:
A process for continuously producing a lactam in water at a high temperature under a high pressure. Namely, a process for producing a lactam characterized by selectively synthesizing the lactam without causing hydrolysis by introducing an oxime into flowing water at a high temperature under a high pressure, wherein the lactam is continuously synthesized at a high rate from the oxime in water at a high temperature of 250 °C or more under a high pressure of 12 Mpa or more.