Abstract:
사용자가 지불하는 이용료에 따른 계층적 서비스(class of service)를 제공하기 위하여 DARC 패킷에 순서 부여 헤드를 부가하여 수신자격이 부여된 데이터만을 수신할 수 있도록 하는 DARC 데이터 송수신 방법을 개시한다. 상기 DARC 데이터 송수신 방법은, 사용료를 지불한 복수의 고객 각각에게 필요한 서비스 정보를, FM을 이용한 DARC 방식을 통하여 송수신하며, 서비스 데이터 분류단계, 복수 개의 DARC 패킷을 생성시키는 단계, 데이터 선택 단계 및 데이터를 해독하는 단계를 구비한다.
Abstract:
하나 이상의 저속 인터페이스들을 집합(aggregation)시켜 단일 고속 인터페이스를 구현하기 위한 인터페이스 모듈 및 이를 포함하는 통신 장치가 제공된다. 본 발명의 일면에 의한 인터페이스 모듈은, 외부 장치와 고속으로 데이터를 송수신하기 위한 고속 인터페이스, 저속 인터페이스들 중에서 하나를 선택하여 고속 인터페이스와 연결시키기 위한 스위칭 부 및 링크 집합 생성부를 포함한다. 본 발명의 일면에 의한 인터페이스 모듈에 포함되는 링크 집합 생성부는 인터페이스 모듈을 포함하는 통신 장치 및 저속 인터페이스들 간에 링크 집합 가상 인터페이스(link aggregation virtual interface)를 생성 및 유지하여, 통신 장치가 링크 집합 가상 인터페이스를 이용하여 데이터를 송수신하도록 한다. 본 발명에 의하여 저렴한 비용으로 고속 인터페이스를 구현할 수 있음은 물론, 링크 집합 기능을 지원하는 모든 통신 장치에서 물리적 인터페이스의 종류에 관계없이 동작하는 인터페이스 모듈이 제공된다.
Abstract:
고속의 패킷 포워딩이 가능하게 하는 주소 번역 프로토콜 테이블 관리방법 및 관리장치가 개시된다. 상기 주소 번역 프로토콜 테이블 관리방법 및 관리장치는, 주소 번역 프로토콜 기능의 짧은 에이징 시간을 충분히 크게 설정하고, 상기 에이징 시간을 짧은 주기의 에이징 시간으로 분할하며, 분할된 에이징 시간이 경과하기 전에 엔트리 정보를 요구함으로써, 엔트리를 갱신하도록 한다.
Abstract:
PURPOSE: A method for selecting an RP(Rendezvous Point) in multicasting communication is provided to select an RP by using an existing routing protocol. CONSTITUTION: When an MR(Multicast Router) receives a routing protocol message(S301), it checks whether the message is valid(S302). If the message is valid, the MR checks whether a domain identifier and a group address are valid(S303,S304). If the domain identifier and the group address are valid, the MR compares an RP select priority value included in the received message and its own RP select priority value(S305). If the RP select priority value of the MR is higher than the RP select priority value included in the message, the MR discriminates whether transmission valid time has elapsed(S307). If the transmission valid time has not elapsed, the MR transmits a message that the MR is an RP of a corresponding multicast group to a different MR(S309) and is standby(S310).
Abstract:
PURPOSE: A BIPC(Bridging Inter Process Communication) processing method for BPDU(Bridging Protocol Data Unit) transceiving in a router/bridge system is provided to enable a BPDU transceiving between one main processor and plural line cards, thereby processing an L2 BPDU in a router/bridge system. CONSTITUTION: An L2 application protocol opens a socket, and binds a virtual device mapped with an outer interface one to one by using the socket(S401,S402). If the L2 application protocol transmits BPDU data to the self socket, a kernel receives the BPDU data through the virtual device(S403), and generates a perfect BPDU frame by adding a BPDU header(S404). The L2 application protocol searches a slot and a port mapped with the virtual device and a destination MAC address of a line card(S405), and adds a BIPC header to the BPDU frame(S406). The BIPC frame is transmitted to the line card(S407).
Abstract:
PURPOSE: A method of supplying a link state for traffic engineering and a device therefor are provided to collect/distribute link state information frequently changing according to a canceled path based on traffic engineering, and to use the information for setting an optimal path which satisfies constraints, thereby supplying high value-added service. CONSTITUTION: A system initializes a link state of a network, and configures traffic engineering topology information(S301-S304). The system calculates a path for a service connection setup request which satisfies new constraints from an operator(S305-S307). The system sets a path according to the calculated path(S308-S312). The system changes information on the link state in accordance with the set path(S313-S316). The system floods the changed information on the link state, and synchronizes the traffic engineering topology information(S317,S318).
Abstract:
PURPOSE: A method for transmitting network path information using a path setup message is provided to obtain information related to the existing path in setting a new path by transmitting path information sharing each link on the new path. CONSTITUTION: An ingress node calculates the shortest path P1 between the ingress node and an egress node(401). The ingress node generates a path setup request message for setting up the P1 to transmit the path setup request message to a next node on the P1(402). Each node on the P1 searches a path information table for another path ID(403). Path information sharing a link with the next node is added to a sharing path route TVL(Type-Length-Value)(404). The path setup request message is transmitted to a next node on the P1(405). It is examined whether the node receiving the path setup request message is the egress node on the P1(406) or not. If so, the egress node generates a path setup response message(407). The sharing path route TVL is added to the generated path setup response message(408). The path setup response message is transmitted to the ingress node through each node on the P1(409). Each node receiving the path setup response message adds P1 information to a path information table of the node(410). The ingress node finally receiving the path setup response message obtains information related to another path passing the link on the P1(411).
Abstract:
PURPOSE: A TMR(Triple Modular Redundancy) device for restart and a method for restarting a component on the same are provided to offer a high stability and reliability by defining a value failure of the component expressing a sign of an error, and recovering the component to an initial state as finding out a state expressing the sign and restarting the component. CONSTITUTION: Three components(100,200,300) include the same configuration elements for the same process for input. A voter(400) outputs the final result value according to a majority voting rule algorithm(420) discriminating the component occurring the value failure by respectively receiving a process result value for the same input from the three components. The component receiving a restart order from the voter performs the initialization for each configuration element.
Abstract:
PURPOSE: A 2-layer multicast group managing method using IGMP packet information in an ethernet switch is provided to allow hosts, which do not support GMRP or GVRP, to register a desired 2-layer multicast group and virtual LAN by using an IGMP packet of an IP layer. CONSTITUTION: An ethernet switch makes an MAC look-up with a destination MAC address of a frame received from a port set in an access mode or in a hybrid mode(601,602). The ethernet switch determines whether a range of the destination MAC address corresponds to 01:00:5e:00:00:00-01:00:5e:7f:ff:ff(603). If it is determined to be an IGMP packet, the ethernet switch searches a mapped virtual LAN ID by searching a mapping table with the group address in the IGMP packet(605-607). It is determined whether a type field value in the IGMP packet relates to a group registration request or deletion(608). If the field value relates to the registration request, the ethernet switch generates a virtual LAN table entry(609,610).
Abstract:
PURPOSE: A signaling control channel management by using In-Fiber signaling control channel in an O-UNI between a client and an optical transmission network and a service shape information transmission system and a method therefor are provided to identify the connection of the traffic channel through a process for identifying the connection of signaling control channel. CONSTITUTION: A signaling control channel management by using In-Fiber signaling control channel in an O-UNI between a client(100) and an optical transmission network and a service shape information transmission system includes a client(100) and an optical transmission network(200). The client(100) includes a user USONET/SDH/WDM processing block(15) and a link managing block(12). The user USONET/SDH/WDM processing block(15) is connected to the optical transmission network(200) through the physical link for managing the traffic channel. The link managing block(12) identifies the connection of the signaling control channel to the optical transmission network(200) by using a predetermined In-Fiber signaling control channel and manages the status of the signaling control channel. And, the optical transmission network(200) includes an optical transmission network NSONET/SDH/WDM processing block(25) and an optical transmission link managing block(22). The optical transmission network NSONET/SDH/WDM processing block(25) is connected to the user USONET/SDH/WDM processing block(15) and the physical link for managing the traffic channel. And, the optical transmission link managing block(22) identifies the signaling control channel connection to the client(100) by using the In-Fiber signaling control channel to manage the status of the signaling control channel.