Abstract:
An autonomous stratospheric unmanned airship with an operating altitude from 5-22 km and with a mutli-month operational cycle. Spheroid rigid geodesic frame of constant volume formed by a multitude of struts, with an outer envelope enclosing the frame defining the eigenfrequency spectrum of the airship above 20 Hz, with vibrational amplitudes between 0.1 and 1 cm. Independently controllable electrical propulsion units, attached to the frame in the horizontal plane passing through the center of mass, can change the direction and value of the thrust vector. Buoyancy is controlled with a system integrated inside the geodesic frame including buoyant fluid pressurized tanks, valves for the release of the buoyant fluid through the buoyant fluid conduit into the buoyant gas cell which fills the geodesic frame. Valves at the subsystem support platform enable ambient atmosphere to fill the internal volume of the frame not occupied by the buoyant gas cell.
Abstract:
Free space optical communication systems, methods, and apparatuses are provided. A system embodiment includes a photodetector for receiving a beacon signal transmitted from a ground communication apparatus, a light source for emitting a light beam toward a source of the beacon signal, where the light beam includes a signal to be transmitted, and a high speed tracking actuator coupled to the light source for moving the light source to maintain the light beam in a direction toward the source of the beacon signal transmitted from the ground communication apparatus.
Abstract:
A new High Altitude Airship (HAA) capable of various extended applications and mission scenarios utilizing inventive onboard energy harvesting and power distribution systems. The power technology comprises an advanced thermoelectric (ATE) thermal energy conversion system. The high efficiency of multiple stages of ATE materials in a tandem mode, each suited for best performance within a particular temperature range, permits the ATE system to generate a high quantity of harvested energy for the extended mission scenarios. When the figure of merit 5 is considered, the cascaded efficiency of the three-stage ATE system approaches an efficiency greater than 60 percent.
Abstract:
An airship has a generally spherical shape and has an internal envelope for containing a lifting gas such as Helium or Hydrogen. The airship has a propulsion and control system that permits it to be flown to a desired loitering location, and to be maintained in that location for a period of time. In one embodiment the airship may achieve neutral buoyancy when the internal envelope is as little as 7% full of lifting gas, and may have a service ceiling of about 60,000 ft. The airship has an equipment module that can include either communications equipment, or monitoring equipment, or both. The airship can be remotely controlled from a ground station. The airship has a solar cell array and electric motors of the propulsion and control system are driven by power obtained from the array. The airship also has an auxiliary power unit that can be used to drive the electric motors. The airship can have a pusher propeller that assists in driving the airship and also moves the point of flow separation of the spherical airship further aft. In one embodiment the airship can be refuelled at altitude to permit extended loitering.
Abstract:
A communications system and method utilizes an unmanned surface vehicle (USV) capable of collecting data about an environment in which the USV resides. At least one micro-aerial vehicle (MAV), equipped for unmanned flight after a launch thereof, is mounted on the USV. Each MAV has onboard radio frequency (RF) communications. Each MAV launched into the air transmits the data collected by the USV using the MAV's RF communications.
Abstract:
Disclosed is an aircraft, configured to have a wide range of flight speeds, consuming low levels of power for an extended period of time, while supporting a communications platform with an unobstructed downward-looking view. The aircraft includes an extendable slat at the leading edge of the wing, and a reflexed trailing edge. The aircraft comprises a flying wing extending laterally between two ends and a center point. The wing is swept and has a relatively constant chord. The aircraft also includes a power module configured to provide power via a fuel cell. The fuel cell stores liquid hydrogen as fuel, but uses gaseous hydrogen in the fuel cell. A fuel tank heater is used to control the boil-rate of the fuel in the fuel tank. The aircraft of the invention includes a support structure including a plurality of supports, where the supports form a tetrahedron that affixes to the wing.
Abstract:
An unmanned, remotely controlled microwave-powered aircraft for use as a stationary communications platform. The aircraft is generally a flying wing with a large, flat inner wing having a rectenna on the underside. Rectennas may also be provided on the underside of the wings, the combined output from the rectenna being used to provide power to two electric motors housed within torpedo-shaped nacelles which drive two rear propellers. The rectenna converts a microwave signal at 35 GHz generated by a ground power station utilizing dual gyrotrons and a 34-meter diameter antenna dish. The aircraft has a preferred airfoil cross section throughout and is constructed of lightweight but strong materials in order to provide an enhanced flying time of several months. A power management and distribution system manages the DC power produced by the rectenna to supply power to the flight controls, propulsion system and payload.
Abstract:
A method includes determining an angular speed of a transceiver of a first movable node based at least in part on a confidence level. The confidence level is representative of a probability of discovering a second node. The method further includes moving the transceiver at the angular speed, transmitting a beacon signal with the transceiver, and receiving a signal with the transceiver from the second node when a line-of-sight alignment between the transceiver and the second node is established. The method further includes ceasing motion of the transceiver at the angular speed. Another method includes at a first node, receiving information of a velocity, a direction of motion, and a transceiver orientation of a second node when a line-of-sight alignment is established. The method further includes moving the transceiver of the first node at an angular velocity direction in azimuthal and elevational planes to maintain the line-of-sight alignment.