Abstract:
The VTOL aircraft (10) includes a free wing (16) having wings on opposite sides of the fuselage (12) connected to one another for joint free rotation and for differential pitch settings under pilot, computer or remote control. On vertical launch, pitch, yaw and roll control is effected by the elevators (26), rudder (24) and the differential pitch settings of the wings, respectively. At launch, the elevator (26) pitches the fuselage (12) nose downwardly to alter the thrust vector and provide horizontal speed to the aircraft whereby the free wing (16) rotates relative to the fuselage (12) into a generally horizontal orientation to provide lift during horizontal flight. Transition from horizontal to vertical flight is achieved by the reverse process and the aircraft may be gently recovered in or on a resilient surface such as a net (66).
Abstract:
A unmanned aerial vehicle (UAV) base station for automated battery pack exchange and methods for manufacturing and using the same. The UAV base station includes a battery-exchange system disposed within a housing having a top-plate. The housing contains a battery array having a plurality of UAV battery packs and a mechanical mechanism for automatically removing an expended battery pack from a UAV that lands on the top-plate and replacing the expended battery pack with a charged battery pack. Thereby, the UAV base station system advantageously enables extended and autonomous operation of the UAV without the need for user intervention for exchanging UAV battery packs.
Abstract:
A system for homing and recharging an unmanned vehicle comprises a plurality of homing layers operative along the radius of an imaginary circle that has the homing target at its center, each homing layer consisting of a sub-system provided with location means of increasing accuracy relative to that of a sub-system that operates along said radius farther away, from the center of said circle.
Abstract:
An apparatus for the recovery of an aircraft includes a capture device and first and second pole pairs. The first pole pair includes first top and bottom poles respectively placed near first top and bottom portions of the capture device. The first pole pair is configured to move from a first position, in which the pole pair holds the capture device in an open position to capture the aircraft, to a second position, in which the pole pair holds the capture device in a closed position to contain the captured aircraft after impact of the aircraft on the capture device. The second pole pair includes second top and bottom poles respectively placed near second top and bottom portions of the capture device. The second pole pair is also configured to move from the first position to the second position. Further, energy elements are coupled on one end to a respective top or bottom portion of the capture device and on another end to a respective top or bottom pole. The energy elements are disposed to absorb the force of the impact of the aircraft.
Abstract:
Example methods and apparatus to deploy and recover a fixed wing unmanned aerial vehicle (block 1100) via a non-fixed wing aircraft (104) are described herein. An example method includes tracking a location of a non-fixed wing aircraft in flight (block 1106), tracking a location of a fixed wing aircraft in flight (block 1106), positioning the non-fixed wing aircraft (104) relative to the fixed wing aircraft (102) based on the locations of the non-fixed wing aircraft (104) and the fixed wing aircraft (102) and coupling, via a gripper (112), the fixed wing aircraft (102) to the non-fixed wing aircraft (104) in mid-flight at a recovery location.
Abstract:
An apparatus (100, 700, 1100, 1500) is provided for dynamically controlling airflow behind a carrier aircraft to redirect air flow during an in-flight recovery of an unmanned aerial vehicle (UAV). The apparatus comprises a frame (110, 910, 1110, 1310) attached to an end portion of an arm member extending from the carrier aircraft. The apparatus comprises a plurality of vanes (120, 720, 1220, 1320, 1510, 1520) disposed within the frame. Each vane is controllable between an opened position and a closed position to dynamically modify the airflow behind the carrier aircraft during the in-flight recovery of the UAV. Alternatively, or in addition to, the apparatus comprises a plurality of compressed air jets (950, 1050, 1150, 1350) disposed on the frame, wherein each jet is controllable to provide active airflow to dynamically modify the airflow behind the carrier aircraft during the in-flight recovery of the UAV.
Abstract:
A landing platform for an unmanned aerial vehicle, including a plurality of substantially funnel-shaped centering housings configured to cooperate with a corresponding plurality of projections of the aerial vehicle for reaching a predetermined landing position. The platform can include a mechanism for recharging the battery of the aerial vehicle and/or with an arrangement for serial data transfer.
Abstract:
In one embodiment, a system includes an unmanned, multirotor helicopter and a fixed-wing aircraft. The multirotor helicopter may couple to the fixed-wing aircraft to support and hold the fixed-wing aircraft. The multirotor helicopter may then elevate the fixed-wing aircraft from a launch site to a release altitude. The multirotor helicopter may also accelerate the fixed-wing aircraft to a release speed and upon reaching the release speed, release the fixed-wing aircraft. The unmanned, multirotor helicopter may then return to the launch site.