Abstract:
A system for launching, refuelling and recovering in flight an aircraft (10) such as an unmanned aerial vehicle (UAV) from a larger carrier aircraft (16) comprising a holder (22) on the carrier aircraft (16) to which the UAV (10) is detachably connectable and an extendable and retractable refuelling device (23, 24) on the carrier aircraft (16) detachably connectable to the UAV (10) whereby to launch the UAV it is disconnected from the holder (22), the refuelling device (23, 24) is extended with the UAV connected thereto to cause the UAV to trail behind the carrier aircraft and the UAV is then disconnected from the refuelling device.
Abstract:
A system for launching, refuelling and recovering in flight an aircraft (10) such as an unmanned aerial vehicle (UAV) from a larger carrier aircraft (16) comprising a holder (22) on the carrier aircraft (16) to which the UAV (10) is detachably connectable and an extendable and retractable refuelling device (23, 24) on the carrier aircraft (16) detachably connectable to the UAV (10) whereby to launch the UAV it is disconnected from the holder (22), the refuelling device (23, 24) is extended with the UAV connected thereto to cause the UAV to trail behind the carrier aircraft and the UAV is then disconnected from the refuelling device.
Abstract in simplified Chinese:揭露可在移动结构上着陆无人飞机的系统、设备及方法。飞机上的感应器可确认移动结构上的预定着陆区。飞机监视感应器数据,以保持其位置盘旋于着陆区上方。飞机估计着陆区之表面的未来姿态,并决定对应于着陆区之表面的期望姿态的着陆时间。无人飞机运行着陆操纵,以带领飞机在预定着陆时间接触着陆区之表面。
Abstract:
A precision delivery vehicle having a vehicle body assembly, a fixed wing system, a rotor system and a guidance system. The vehicle body assembly can retain a payload. The fixed wing system includes first and second wings coupled to the vehicle body for fixed wing flight. The rotor system includes a mast structure, a rotor hub rotatable about the mast structure and at least two rotor blades coupled to the rotor hub and rotatable with the rotor hub relative to the mast structure. The at least two rotor blades are movable between a collapsed configuration and a deployed configuration. In the collapsed configuration, the precision delivery vehicle is in fixed wing flight. Upon placement of the at least two rotor blades into the deployed configuration, the precision delivery vehicle is placed into rotative flight. The guidance system is structurally configured to direct the precision delivery vehicle to a target
Abstract:
In an example, there is disclosed a drone operator computing apparatus having : a network interface; and one or more logic elements providing a broker agent to: communicatively couple to a drone brokerage engine via the network interface; send a carrier request comprising a request for a carrier to carry a drone through a prohibitive zone; receive a brokered carrier response comprising an engage point; and dispatch the drone to the engage point. There is also disclosed a drone having a navigation engine to proceed to the engage point and engage a carrier. There is also disclosed a brokerage engine to broker a carrier request from the drone operator, receive a carrier response from a carrier operator, and broker the carrier response.
Abstract:
In some embodiments, apparatuses and methods are provided herein useful to transport unmanned aircraft systems to delivery products. In some embodiments, gas-filled aerial transport and launch system, comprises: a transport aircraft comprising: a gas chamber; and a carrier compartment where the gas chamber induces a lifting force on the carrier compartment; at least one propulsion system; and a navigation control system that controls the direction of travel of the transport aircraft; wherein the carrier compartment comprises: an unmanned aircraft system (UAS) storage area configured to receive multiple UASs; and an UAS launching bay that enables the UAS to be launched while the transport aircraft is in flight and while the UAS is carrying a package to be delivered.
Abstract:
An unmanned aerial combat vehicle system is disclosed. The system provides for an unmanned aerial combat vehicle that is capable of performing reconnaissance, disrupting enemy communications, or delivering a weaponized payload. The unmanned aerial combat vehicle may also be equipped with a cloaking mechanism, where it can mask it' s heat signature, or simulate an image on its outer surface.
Abstract:
Stowable and deployable unmanned aerial vehicles (UAVs), and associated systems and methods are disclosed. A UAV in accordance with a particular embodiment includes a main body, frames carried by the main body, and motors carried by the frames. At least two frames are positioned to move relative to each other between a stowed configuration in which the frames are generally aligned proximate to each other and a deployed configuration different from the stowed configuration. The main body can include a first body portion pivotably connected to a second body portion. In a stowed configuration, the body portions can generally overlap each other. A UAV in accordance with particular embodiments includes a modular electronics unit carried by the UAV and including a camera, a battery, and a vehicle controller. Modular electronics units can be configured to be removably connected to and disconnected from the UAV and other vehicles.
Abstract:
This invention relates to an Unmanned Aerial Vehicle hereinafter called "Mother UAV" member (11) capable of carrying modules of Sub Unmanned Aerial Vehicle members (12) hereinafter called "Sub UAV" member. More particularly, the method and system that is capable of communicating via satellite and remote control technology wherein ejecting said Sub UAV members (12) from the Mother UAV member (11) wherein Sub UAV members (12) autonomously fly in sequence in a coordinated manner with the Mother UAV member (11), and capable of engaging in multiple missions in high, medium, low altitude, and surface, also communication with under sea submarines (27). Further, comprises of a method and system that the Sub UAV members (12) are able to return back to the Mother UAV member (11) after the mission is completed and be firmly secured to the flatbed (14) of the Mother UAV member (11). The present invention is specifically designed for multifunctional and multipurpose applications where humans and other vehicles are unable to access, for civil, commercial and military purposes.
Abstract:
A container 14 is used to launch a small aircraft 20, such as an unmanned aerial vehicle (UAV), from a host aircraft 100. The container protects the UAV from stresses during the initial ejection from a launcher 30 that is part of the host aircraft. The initial stresses may be due to turbulence in the vicinity of the host aircraft, high airspeed, and/or tumbling that may result from the ejection from the host aircraft moving at a high airspeed. The container may deploy a drag device 62, such as a drogue chute, to slow the container down and reorient the container, prior to deployment of the UAV from the container. During the time between ejection from the host aircraft and deployment from the container, the UAV may be powered up and acquire data, such as global positioning system (GPS) data, to allow the UAV a "hot start" enabling immediate mission commencement.