Abstract:
A monochromator has at least one optical grating which is rotatable in relation to incident light of a source of light, a drive unit to rotate the optical grating by a connected drive rod around a longitudinal axis, and a control unit to control the drive unit and thereby the rotation of the optical grating. The drive unit further has a first damping element with at least one electrical conductive surface, and a second damping element which provides at least one magnetic field having a magnetic axis which penetrates the electrical conductive surface. One of the first and second damping elements is fixed to the drive rod and is rotatable along with the drive rod around the longitudinal axis thereof in relation to the other one of the second or first damping element.
Abstract:
A system to generate multiple beam lines in an oblique angle multi-beam spot scanning wafer inspection system includes a beam scanning device configured to scan a beam of illumination, an objective lens oriented at an oblique angle relative to the surface of a sample and with an optical axis perpendicular to a first scanning direction on the sample, and one or more optical elements positioned between the objective lens and the beam scanning device. The one or more optical elements split the beam into two or more offset beams such that the two or more offset beams are separated in a least a second direction perpendicular to the first direction. The one or more optical elements further modify the phase characteristics of the two or more offset beams such that the two or more offset beams are simultaneously in focus on the sample during a scan.
Abstract:
An optical instrument monitors PCR replication of DNA in a reaction apparatus having a temperature cycled block with vials of reaction ingredients including dye that fluoresces in presence of double-stranded DNA. A beam splitter passes an excitation beam to the vials to fluoresce the dye. An emission beam from the dye is passed by the beam splitter to a CCD detector from which a processor computes DNA concentration. A reference strip with a plurality of reference emitters emit reference beams of different intensity, from which the processor selects an optimum emitter for compensating for drift. Exposure time is automatically adjusted for keeping within optimum dynamic ranges of the CCD and processor. A module of the beam splitter and associated optical filters is associated with selected dye, and is replaceable for different dyes.
Abstract:
A glass sheet acquisition and positioning mechanism and associated method are utilized in an in-line glass sheet optical inspection system. The mechanism includes an exterior support frame mounted in proximity to one of the glass sheet processing system conveyors, and an interior support frame operably connected to the exterior support frame such that the interior support frame may be selectively positioned from its first orientation to a second orientation whereby the retained glass sheet is positioned between the camera and the screen at a preselected position. The interior support frame is also operably connected to the exterior support frame to provide for positioning of the interior support frame to a third orientation in which the glass sheet is released from the interior support frame for continued movement on the conveyor. An in-line glass sheet optical inspection system incorporating the glass sheet acquisition and positioning mechanism is also disclosed.
Abstract:
An optical instrument is provided for simultaneously illuminating two or more spaced-apart reaction regions with excitation beams generated by a light source. The light source can include an area light array of light emitting diodes, one or more solid state lasers, one or more micro-wire lasers, or a combination thereof. According to various embodiments, a Fresnel lens can be disposed along a beam bath between the light source and the reaction regions. Methods of analysis using the optical instrument are also provided.
Abstract:
An optical instrument monitors PCR replication of DNA in a reaction apparatus having a temperature cycled block with vials of reaction ingredients including dye that fluoresces in presence of double-stranded DNA. A beam splitter passes an excitation beam to the vials to fluoresce the dye. An emission beam from the dye is passed by the beam splitter to a CCD detector from which a processor computes DNA concentration. A reference strip with a plurality of reference emitters emit reference beams of different intensity, from which the processor selects an optimum emitter for compensating for drift. Exposure time is automatically adjusted for keeping within optimum dynamic ranges of the CCD and processor. A module of the beam splitter and associated optical filters is associated with selected dye, and is replaceable for different dyes.
Abstract:
An information-acquiring device for acquiring information on an objective substance to be detected, which is provided with a sensing element that has a surface capable of fixing the objective substance to be detected thereon, and makes applied light change its wavelength characteristics in response to the fixed state of the objective substance to be detected onto the surface, a light source, and light-receiving means for receiving light emitted from the light source through the sensing element, has the light-receiving means and the light source arranged on the same substrate so that the light which has been emitted from the light source and has been transmitted through the sensing element can be led to the light-receiving means, and has means for varying the wavelength regions of each light incident on each of a plurality of the light-receiving means installed in an optical path from the light source to the light-receiving means.
Abstract:
An information-acquiring device for acquiring information on an objective substance to be detected, which is provided with a sensing element that has a surface capable of fixing the objective substance to be detected thereon, and makes applied light change its wavelength characteristics in response to the fixed state of the objective substance to be detected onto the surface, a light source, and light-receiving means for receiving light emitted from the light source through the sensing element, has the light-receiving means and the light source arranged on the same substrate so that the light which has been emitted from the light source and has been transmitted through the sensing element can be led to the light-receiving means, and has means for varying the wavelength regions of each light incident on each of a plurality of the light-receiving means installed in an optical path from the light source to the light-receiving means.
Abstract:
A device for optically sensing a specimen with a large depth of field has a lighting module which illuminates a zone of the specimen during a predetermined measurement period with a pattern whose phase is modified in time during the measurement period, generating a specimen light to which a corresponding time-variable phase is imparted. The device also includes a detection module having a space-resolving detection zone which records the specimen zone and has multiple recording pixels, two analysis channels which can be connected to the recording pixels, and an analysis unit is connected to both analysis channels. A control unit is provided which, during the measurement period, connects each recording pixel in synchrony with the phase of the detected specimen light to the two analysis channels, alternatively, in such a way that the detected specimen light is divided into two portions phased in relation to one another, and the analysis unit calculates an optical split-image of the specimen zone on the basis of the two phased portions supplied to the analysis channels.
Abstract:
In one aspect, the amount of data needed to store image intensity data obtained from a scatterometer (100) such as a Parousiameter is reduced by varying a resolution with which the intensity data is used in different regions of a grid according to determined variations in the intensity. In another aspect, a scatterometer is provided with an aspherical mirror (170, 900, 1000) for imaging a test sample (180) to correct for distortions introduced by the off center placement of the mirror relative to the test sample. In another aspect, an optical surface inspection apparatus uses an auxiliary lens (1440) between a test surface (1420) and an illuminated patterned grid (1410) to project the patterned grid (1610) on the test surface. A camera (1450) is focused on the grid on the test surface as a real image.