Abstract:
A field emission display includes a first substrate; a plurality of gate electrodes formed on the first substrate in a predetermined pattern; an insulation layer formed covering the gate electrodes over an entire surface of the first substrate; a plurality of cathode electrodes formed on the insulation layer in a predetermined pattern, a plurality of emitters formed on the cathode electrodes; a plurality of counter electrodes formed on the insulation layer at a predetermined distance from the emitters and in a state of electrical connection to the gate electrodes, the counter electrodes forming an electric field directed toward the emitters; a second substrate provided at a predetermined distance from the first substrate and sealed in a vacuum state with the first substrate; an anode electrode formed on a surface of the second substrate opposing the first substrate; and a plurality of phosphor layers formed over the anode electrode in a predetermined pattern.
Abstract:
The invention relates to an apparatus for the controlled delivery of ionizing radiation to a therapy location. It comprises a source (4) of ionizing radiation provided at the distal end of an elongated member (6). It also has a control unit (12) for controlling the movement of said radiation source (4) at the therapy location, via a driving unit (21, 22; 23, 24, 25, 26). A method according to the invention comprises controlling the radiation dose at the therapy location, by controlling the movement of the source.
Abstract:
By using a large area cathode, an electron source can be made that can irradiate a large area more uniformly and more efficiently than currently available devices. The electron emitter can be a carbon film cold cathode, a microtip or some other emitter. It can be patterned. The cathode can be assembled with electrodes for scanning the electron source.
Abstract:
Apparatus and method are provided for a package structure that enables mounting of a field-emitting cathode into an electron gun. A non-conducting substrate has the cathode attached and the cathode is electrically connected to a pin through the substrate. Other pins are electrically connected to electrodes integral with the cathode. Three cathodes may be mounted on a die flag region to form an electron gun suitable for color CRTs. Accurate alignment of an emitter array to the apertures in the electron gun and other electrodes such as a focusing lens is achieved. The single package design may be used for many gun sizes. Assembly and attachment of the emitter array to the electron gun during construction of the gun can lower cost of construction.
Abstract:
Apparatus and method are provided for a package structure that enables mounting of a field-emitting cathode into an electron gun. A non-conducting substrate has the cathode attached and the cathode is electrically connected to a pin through the substrate. Other pins are electrically connected to electrodes integral with the cathode. Three cathodes may be mounted on a die flag region to form an electron gun suitable for color CRTs. Accurate alignment of an emitter array to the apertures in the electron gun and other electrodes such as a focusing lens is achieved. The single package design may be used for many gun sizes. Assembly and attachment of the emitter array to the electron gun during construction of the gun can lower cost of construction.
Abstract:
A vacuum envelope that can improve the vacuum degree in a field emission device is provided. The vacuum envelope includes the cathode side substrate 2 on which field emission elements are formed and the anode substrate 1 spaced by a predetermined distance in the electron emission direction. At least two openings are formed before sealing the vacuum envelope. The remaining gas is ousted from the vacuum envelope by introducing a high temperature gas inside the vacuum envelope for a predetermined period of time. Thereafter, one of the openings is sealed while the envelope is being evacuated to a vacuum state through the remaining openings.
Abstract:
A method and apparatus for delivering localized x-ray radiation to the interior of a body includes a plurality of x-ray sources disposed in a distal portion of a flexible catheter shaft. The plurality of x-ray sources are secured to a flexible cord disposed longitudinally throughout at least a portion of the shaft. The plurality of x-ray sources are electrically coupled to a control circuit for activating specific ones of the plurality of x-ray sources in order to customize the irradiation of the interior of the body.
Abstract:
A field emission display having an n-channel high voltage thin film transistor is disclosed. According to the present invention, a signal for driving pixels controls by the nHVTFT attached with each pixel, therefore, the signal voltage of row and column drivers is exceedingly decreased. As a result, it is possible to implement a field emission display capable of providing a high quality picture in a low consumption power, a low driving voltage and inexpensive to manufacture, and preventing a line cross talk using the nHVTFT. By using a cylindrical resistive body underlying a cone-shaped emitter tip, the present invention is to provide a field emission display having an excellent contollability and stability of the emission current, and a dynamic driving capability.
Abstract:
A method for fabricating a field emission display is disclosed. The method includes the steps of arranging a sealing layer between a face plate and a substrate, heating the sealing layer until the sealing layer adheres to the face plate and the substrate, and then pulling the face plate away from the sealing layer so that the vacuum is improved. The sealing layer may be constructed from glass and heated with a heating coil made from ni-chrome wire. The elements can be positioned using industrial robots using common manufacturing techniques.
Abstract:
A cell driving device of a field emission display having a field emission pixel cell with a cathode (10) for emitting electrons and a gate electrode (12) for focusing and accelerating the electrons emitted from the cathode. The cell driving device includes: a first switching unit (14) for switching a first voltage (Vdd1) provided to the gate electrode (12); at least more than two transistors (18, 20, 22 and 24) for current control, which are in parallel connected to form a current mirror between the cathode and a second voltage (Vdd2); a voltage dividing unit coupled between a third voltage (Vdd3) and the second voltage (Vdd2) to drive the at least more than two transistors (18, 20, 22 and 24) for current control at the same voltage; at least more than two transistors for voltage switch each connected between the voltage dividing unit and the transistor for current control; and a controlling unit (38) for controlling at least more than two transistors (30, 32, 34 and 36) for voltage switch according to the size of a video signal (VS).