Abstract:
Methods of patterning hydrophobic materials onto hydrophilic substrates are described. Also described are articles comprising a hydrophilic substrate impregnated with a hydrophobic material, and a transparent layer capable of being patterned in contact with one surface of the substrate.
Abstract:
The invention provides trivalent hapten molecules (trihapten molecules) and complexes thereof. The trivalent hapten molecules are useful for forming relatively stable complexes comprising hapten molecules and divalent ligands (e.g., antibodies) for the hapten molecules. Such trihapten molecules are useful for assays, e.g., of antibodies, or for depleting a ligand from a sample, e.g., for treating a disease by binding an undesirable receptor such as an antibody. Complexes of trivalent hapten molecules are useful for selectively targeting relatively high density, multivalent presentations of haptens, such as occur on cells overexpressing a molecule on their surfaces, such as cancer cells.
Abstract:
A free-standing thin film is fabricated from a structure comprising a base layer coated with a sacrificial polymer layer, which is in turn coated with a flexible polymer layer. Cells are then seeded onto the flexible polymer layer and cultured to form a tissue. The flexible polymer layer is then released from the base layer to produce a free-standing thin film comprising the tissue on the flexible polymer layer. In one embodiment, the cells are myocytes, which can be actuated to propel or displace the free-standing film. In another embodiment, the free-standing film is used to treat injured human tissue.
Abstract:
The present invention generally relates to lasers comprising fluidic channels, such as microfluidic channels. In some instances, the channel contains two or more fluids. The fluids may remain non-mixed within the channel, for example, due to immiscibility and/or laminar flow within the channel. The fluids may be arranged in the channel such that light propagating in a first fluid is prevented by the second fluid from exiting the first fluid, for example, due to differences in the indexes of refraction (e.g., causing internal reflection of the fluid to occur). Thus, in one embodiment, a first fluid may be at least partially surrounded by a second fluid having a second index of refraction lower than the index of refraction of the first fluid. In some embodiments, the fluidic channel is used as a laser, for instance, a dye laser, i.e., a laser created by directing light at a dye to produce coherent light. The dye may be present in one or more fluids within the fluidic channel. The incident light (for example, created by another laser) may be directed at the channel from any angle. In some cases, laser light may be produced in a direction substantially aligned with the longitudinal axis of the channel. In some embodiments, the laser is free of mirrors, prisms, or gratings, or the laser may produce coherent light using a non-resonant photonic pathway. However, in other cases, mirrors, prisms, or gratings may be used to reflect light along the channel to enhance stimulated emission of coherent light. Another aspect of the invention includes optical diffractors, such as prisms or gratings, which can contain a fluid. The optical diffractors, in certain embodiments, are positioned to diffract light, such as coherent light, emanating from the fluidic channel. Still other aspects of the invention provide devices, kits, and methods of making and using such lasers.
Abstract:
The present invention provides articles resistant to the adsorption of proteins, cells and bacteria. The articles can either have a chemical chain bonded thereon where the chemical chain can comprise a terminal group free of a hydrogen bond donor or where a hydrogen bond donor is sufficiently buried such that an exposed surface of the article including the chemical chain is free of a hydrogen bond donor. The chemical chain, or plurality of chemical chains, can comprise a monolayer such as a self-assembled monolayer (SAM) which can be homogeneous (one type of SAM) or mixed, i.e. or more different types of SAMs. Other more specific examples of chemical chains are provided. The plurality of chemical chains can comprise a polymer such as a polyamine. In many aspects, the plurality of chemical chains is sufficiently free of cross-linking or branching. The present invention also provides an article capable of specific binding of a desired biomolecule while preventing non-specific binding of biomolecules.
Abstract:
Methods and systems for effecting responses on surfaces utilizing microlens arrays including microoptical components embedded or supported by support element and positioned from the surface at a distance essentially equal to the image distance of the microoptical component with spacer elements are disclosed. Microlens arrays can be used to manipulate incident energy or radiation having a distribution in characteristic property(s) defining an object pattern to form a corresponding image pattern on a substrate surface. The energy can be light having a pattern or a specific wavelength, intensity or polarization or coherence alignment. The image pattern can have features of order 100 nn in size or less produced from corresponding object patterns having features in the order millimeters. The size of the object pattern can be reduced by the microlens arrays described by a factor of 100 or more using a single step process to form the image patterns.
Abstract:
The invention provides ceramic molded solid articles and methods for making these articles on the micron scale. Articles are molded from ceramic precursors, optionally using molds including at least one portion that is elastomeric.
Abstract:
The present invention describes improved microfluidic systems and procedures for fabricating improved microfluidic systems, which contain one or more levels of microfluidic channels. The methods for fabrication the systems disclosed can provide a convenient route to topologically complex and improved microfluidic systems. The microfluidic systems can include three-dimensionally arrayed networks of fluid flow paths therein including channels that cross over or under other channels of the network without physical intersection at the points of cross over. The microfluidic networks can be fabricated via replica molding processes utilizing mold masters including surfaces having topological features formed by photolithography. The present invention also involves microfluidic systems and methods for fabricating complex patterns of materials, such as biological materials and cells, on surfaces utilizing the microfluidic systems. Specifically, the invention provides microfluidic surface patterning systems and methods for fabricating complex, discontinuous patterns on surfaces that can incorporate or deposit multiple materials onto the surfaces. The present invention also provides improved microfluidic stamps or applicators for microcontact surface patterning, which are able to pattern onto a surface arbitrary two-dimensional patterns, and which are able to pattern multiple substances onto a surface without the need for multiple steps of registration or stamping during patterning and without the need to selectively "ink" different regions of the stamp with different materials.
Abstract:
Improved methods of forming a patterned self-assembled monolayer on a surface and derivative articles are provided. According to one method, an elastomeric stamp is deformed during and/or prior to using the stamp to print a self-assembled molecular monolayer on a surface. According to another method, during monolayer printing the surface is contacted with a liquid that is immiscible with the molecular monolayer-forming species to effect controlled reactive spreading of the monolayer on the surface. Methods of printing self-assembled molecular monolayers on nonplanar surfaces and derivative articles are provided, as are methods of etching surfaces patterned with self-assembled monolayers, including methods of etching silicon. Optical elements including flexible diffraction gratings, mirrors, and lenses are provided, as are methods for forming optical devices and other articles using lithographic molding. A method for controlling the shape of a liquid on the surface of an article is provided, involving applying the liquid to a self-assembled monolayer on the surface, and controlling the electrical potential of the surface.
Abstract:
A pneumatically powered, fully untethered mobile soft robot is described. Composites consisting of silicone elastomer, polyaramid fabric, and hollow glass microspheres were used to fabricate a sufficiently large soft robot to carry the miniature air compressors, battery, valves, and controller needed for autonomous operation. Fabrication techniques were developed to mold a 0.65 meter long soft body with modified Pneumatic network actuators capable of operating at the elevated pressures (up to 138 kPa) required to actuate the legs of the robot and hold payloads of up to 8 kg. The soft robot is safe to handle, and its silicone body is innately resilient to a variety of adverse environmental conditions including snow, puddles of water, direct (albeit limited) exposure to flames, and the crushing force of being run over by an automobile.