Abstract:
The disclosed subject matter relates to a method for forming an ordered assembly of nanoparticles in spatially defined regions. The method is based on migration of a dispersion of nanoparticles from a reservoir to a microchannel and controlled evaporation of the solvent in the dispersion to facilitate the formation of the ordered assembly in the microchannel. The disclosed subject matter also relates to an apparatus for preparing ordered assembly of nanoparticles, use of the ordered assembly of nanoparticles in the manufacture of materials and devices, and materials and devices based on or including such ordered assembly of nanoparticles.
Abstract:
A method and apparatus for applying a uniform membrane coating to a substrate, such as a honeycomb structure, having a plurality of through-channels, wherein the through-channels have an average diameter of less than or equal to 3 mm. The method includes providing a liquid precursor comprising membrane-forming materials to the substrate and applying a pressure differential across the substrate. The pressure differential causes the liquid precursor to travel uniformly through the through-channels, depositing the membrane-forming materials on the walls of the through-channels and forming the membrane on the walls of the through-channels. The apparatus includes a chamber capable of holding the substrate and of maintaining a pressure differential across the plurality of through-channels.
Abstract:
Provided is a double-side coating apparatus which can uniformly coat both surfaces of a substrate to be processed with a coating solution and form uniform coating films on both the surfaces of the substrate to be processed. A double-side coating apparatus (1) includes a holding mechanism (3a) which holds a substrate (2) to be processed so that the thickness direction of the substrate (2) to be processed is a horizontal direction; a rotational driving mechanism which rotates the substrate (2) to be processed in a circumferential direction; a first coating solution nozzle (18a) which jets a coating solution onto one main surface (2a) of the substrate (2) to be processed; and a second coating solution nozzle which jets the coating solution onto the other main surface (2b) of the substrate (2) to be processed. The first coating solution nozzle (18a) and the second coating solution nozzle are symmetrically arranged with respect to a thickness center surface of the substrate (2) to be processed. Provided is an edge rinsing apparatus which can accurately and stably rinse only a fixed width of an outer peripheral portion of the substrate and can easily control the width of the outer peripheral portion to be rinsed even if the width of the outer peripheral portion to be rinsed is small.
Abstract:
The invention relates to a method for producing polymer-coated metal foils, comprising the following steps: (a) applying a base layer (7) onto a support foil (3), with a dispersion (5) which comprises electrolessly and/or electrolytically coatable particles in a matrix material, (b) at least partially drying and/or at least partially curing the matrix material, (c) forming a metal layer (19) on the base layer (7) by electroless and/or electrolytic coating of the base layer (7) comprising the electrolessly or electrolytically coatable particles, (d) applying a polymer (23) to the metal layer (19). Furthermore, the invention relates to a use of the polymer-coated metal foil for the production of printed circuit boards.
Abstract:
A method for manufacturing a thin film, includes the steps of: mixing a thin-film forming material and a surfactant to prepare a dispersion in which the thin-film forming material is dispersed; forming a dispersion film from the dispersion at an inner circumference side of ring-shaped holding means; relatively moving a cylindrical supporter and the dispersion film while being in contact with each other so that the dispersion is transferred on a surface of the supporter to have a film shape, the supporter being disposed between a central portion of an inside space of the holding means and an outer circumference thereof and along an inner circumference of the holding means; drying the dispersion having a film shape formed on the surface of the supporter to form the thin film.
Abstract:
An adjunct apparatus for coating moving sheets is provided within an in-line apparatus of manufacturing the sheets. The adjunct apparatus comprises at least one array of controlled orifices capable of producing jets of UV curable composition directed towards the sheets. The composition is cured by at least one UV radiation tube placed adjacent to the arrays of controlled orifices.
Abstract:
There is described an apparatus (1) for coating a cylinder (C), in particular a wiping cylinder of an intaglio printing press, with a plastic composition comprising inter alia a blade mechanism (4) comprising a single substantially planar blade (40) with a straight edge (40a) extending along the full length of the cylinder to be coated and which is mounted rotatably about an axis parallel to the axis of rotation of the cylinder to be coated. The blade comprises, at its terminal end proximate to the cylinder, an inclined end portion (4a) having an inverted-V shape rising from the upper side of the blade, the top edge of the inclined end portion forming the straight edge of the blade. The blade is adapted to be rotated so that the straight edge of the blade undergoes an upward movement substantially tangential to the periphery of the cylinder in order to discontinue the application of the plastic composition onto the surface of the cylinder.
Abstract:
Disclosed herein is a method for making a nanoparticle film comprising dispersing nanoparticles in a first liquid; adding a second liquid to the first liquid to form a nanoparticle film on top of a solution comprising the first liquid, the second liquid and the nanoparticles, wherein the second liquid has a dielectric constant that is different from a dielectric constant of the first liquid; and contacting a substrate with the solution to deposit the nanoparticle film onto the contacted portion of the substrate. Disclosed herein too is a method for detecting an analyte comprising dispersing nanoparticles in a first liquid; adding a second liquid to the first liquid to form a nanoparticle film on top of a solution comprising the first liquid, the second liquid and the nanoparticles, wherein the second liquid has a dielectric constant that is different from a dielectric constant of the first liquid; contacting a substrate with the solution to deposit the nanoparticle film onto the substrate; disposing upon the nanoparticle film an analyte; and performing surface enhanced Raman spectroscopy to determine the identity of the analyte.
Abstract:
A method of forming a polymer layer on a support surface by the use of a coating agent and polymerizable compounds. The coating agent provides photoreactive groups adapted to attach the agent to the surface, as well as photoreactive groups adapted to remain unattached to the surface, and thus serve as photoinitiators for the activation of polymerizable compounds in order to form a polymer layer thereon. Also provided are coating agents, per se, as well as a method of using such agents and the resultant surfaces and devices fabricated therefrom.
Abstract:
A pulsed detonation gun comprises a small-diameter detonation tube, an igniter, and an outlet for discharging detonation products containing a coating material. A detonable or reactive mixture containing a coating precursor is formed in the detonation tube, and the detonable or reactive mixture is ignited to produce detonation or reaction products containing the coating precursor or a coating material formed in situ during a detonation process or a deflagration process. The coating material is discharged through the outlet and is contacted with the substrate to produce a coating. The device is particularly useful for coating the inside surfaces of small-diameter tubes and a variety of other difficult-to-reach substrate surfaces.