Abstract:
A man-portable unmanned aerial system launcher (UAS) launcher includes a rail assembly having an internal track and a carriage assembly having a base configured to translate within the internal track. The carriage assembly also includes a cradle configured to support a UAS and a bracket configured to support the cradle above the base. The UAS launcher includes a launch control system configured to secure the carriage assembly in the launch-ready position until the launch control system receives a launch signal. The UAS launcher also includes one or more elastic members configured to engage the carriage assembly and the rail assembly. Once the carriage assembly is translated to the launch-ready position, strain is applied to the carriage assembly by the one or more elastic members. Release of the carriage assembly enables force generated by strain of the elastic members to propel the carriage assembly toward a launch position.
Abstract:
Methods and apparatuses for cable launching airborne devices (e.g., unmanned aircraft) are disclosed. In one embodiment, an apparatus includes an elongated structure, e.g., a tower, boom or derrick. At least one flexible elongated member (e.g., a cable or rope) can be attached toward one end to the structure and toward another end to the ground or another structure to form an elongated launch path. A cradle, which can carry the airborne device, can also be movably attached to the flexible elongated member and can be accelerated along the launch path. As the cradle decelerates, the aircraft can be released into flight.
Abstract:
Methods and apparatuses for launching unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft (150) can be launched from an apparatus that includes a launch carriage (120) that moves along a launch axis. A gripper (180) carried by the launch carriage can have at least one grip Portion (181) in contact with the aircraft while the launch carriage accelerates along the launch axis. The at least one grip portion can move out of contact with the fuselage of the aircraft as the launch carriage (120) decelerates, releasing the aircraft (150) for takeoff.
Abstract:
A portable unmanned air vehicle and launcher system is provided that includes a foldable unmanned air vehicle having a pressure tube; a launch gas reservoir for holding launch gas; a launch tube operatively connected to the launch gas reservoir and having a free end that is positioned in the pressure tube of the air vehicle; a free piston positioned within the launch tube; and a free piston stop to prevent the free piston from leaving the launch tube. A first portion of the launch gas in the launch gas reservoir is released into the launch tube and forces the free piston from an initial position to an end position at which the free piston is stopped by the free piston stop.
Abstract:
Methods and apparatuses for assembling, launching, recovering, disassembling, capturing, and storing unmanned aircraft and other flight devices or projectiles are described. In one embodiment, the aircraft can be assembled from a container with little or no manual engagement by an operator. The container can include a guide structure to control motion of the aircraft components. The aircraft can be launched from an apparatus that includes an extendable boom. The boom can be extended to deploy a recovery line to capture the aircraft in flight. The aircraft can then be returned to its launch platform, disassembled, and stored in the container, again with little or no direct manual contact between the operator and the aircraft.
Abstract:
A flyer assembly is adapted for launching with, transit in, and deployment from an artillery shell having a central void region extending along a ballistic shell axis. The flyer assembly includes a jettisonable shroud and a flyer. The shroud extends along a shroud axis, and is positionable within the central void region with the shroud axis substantially parallel to the shell axis. The flyer is adapted to withstand a launch acceleration force along a flyer axis when in a first state, and to effect aerodynamic flight when in a second state. When in the first state, the flyer is positionable within the shroud with the flyer axis parallel to the shroud axis and the shell axis. The flyer includes a body member disposed about the flyer axis, and a foldable wing assembly mounted to the body member. The wing assembly is configurable in a folded state characterized by a plurality of nested wing segments when the flyer is in the first state. The wing assembly is configurable in an unfolded state characterized by a substantially uninterrupted aerodynamic surface when the flyer is in the second state. The flyer assembly is adapted to be launched from a ballistic delivery system such as an artillery cannon, and can thus reach a target quickly, without expending system energy stored within the flyer. During launch, the flyer is coupled to the shroud so as to maintain a portion of the flyer in tension during an acceleration of the flyer along the flyer axis resulting from the launch. The flyer assembly is adapted to withstand the high g-load an high temperature environments of a cannon launch, and can tolerate a set-back g load of about 16,000 g.
Abstract:
A VTOL/STOL free wing aircraft (100) includes a free wing (110) having wings on opposite sides of a fuselage (102) connected to one another respectively adjacent fixed wing inboard or center root sections (117) fixedly attached to the fuselage (102) for free rotation about a spanwise axis (112). Horizontal and vertical tail surfaces (138, 140) are located at the rear end of a boom assembly (120) rotatably connected to the fuselage (102). A gearing (150) or screw rod (160) arrangement controlled by the pilot or remote control operator selectively relatively pivots the fuselage (102) in relation to the tail boom assembly (120) to enable the fuselage to assume a tilted or nose up configuration to enable VTOL/STOL flight.
Abstract:
Methods and apparatus for reducing energy consumed by drones during flight are disclosed. A drone includes a housing, a motor, and a route manager to generate a route for a flight of the drone based on wind data. The wind data includes turbine-generated wind data provided by turbines that detect airflows received at the turbines. The turbines are located in an area within which a segment of the flight of the drone is to occur. The route is to be followed by the drone during the flight to reduce energy consumed by the drone during the flight.
Abstract:
An improved unmanned aerial vehicular system having a rotor head assembly with any balanced number of rotary wings or blades, a generally tubular body assembly, a gimballed neck connecting the head to the body, and a navigation, communications and control unit such as for military and humanitarian operations, including payload delivery and pickup. The vehicle is generally guided using a global positioning satellite signal, and by pre-programmed or real time targeting. The vehicle is generally electrically powered and may be launched by one of (a) hand-launch, (b) air-drop, (c) catapult, (d) tube-launch, or (e) sea launch, and is capable of landing on both static and dynamic targets. Once launched, unmanned aerial vehicles may be formed into arrays on a target area and find use in surveillance, warfare, and in search-and-rescue operations.
Abstract:
An unmanned aerial launch vehicle (UAV) launch apparatus is disclosed that includes a UAV having an exterior surface, an aerial vehicle (AV) tab extending from the exterior surface, a tube containing the UAV, the tube including a tab stop configured to controllably hinder travel of the AV tab past the tab stop, and a pair of opposing tab guides configured to position the AV tab for travel over the tab stop.