Abstract:
Systems and methods include UAVs that serve to assist carrier personnel by reducing the physical demands of the transportation and delivery process. A UAV generally includes a UAV chassis including an upper portion, a plurality of propulsion members configured to provide lift to the UAV chassis, and a parcel carrier configured for being selectively coupled to and removed from the UAV chassis. UAV support mechanisms are utilized to load and unload parcel carriers to the UAV chassis, and the UAV lands on and takes off from the UAV support mechanism to deliver parcels to a serviceable point. The UAV includes computing entities that interface with different systems and computing entities to send and receive various types of information.
Abstract:
A system for landing, comprising a vertical-take-off-and-landing (VTOL) unmanned air vehicle (UAV) having landing gear, wherein the landing gear is telescopic and comprises a sensor, and wherein the landing gear is compressed upon landing on a surface, and the compression causes a signal to be sent to a system that computes the slope of the ground surface using the length of the compressed landing gear and the attitude of the UAV. If the center of gravity falls within the support area, the legs are locked and the UAV power is turned off. If the center of gravity falls outside the support area, the UAV is forced to take off and find a safer landing spot.
Abstract:
Disclosed are embodiments of a rotary-wing drone that includes a drone body, linking arms that extend from the drone body with a propulsion unit located on a distal end of the linking arms, and at least two drone supports extending from the drone body. The drone supports may include a lifting means so that the drone supports are able to be lifted when the drone flies, where the drone supports come into alignment with the linking arms. The drone supports may form the leading edge of the rear linking arms and/or the trailing edge of the front linking arms of the drone.
Abstract:
Aerial vehicles are provided with one or more transformable arms (110, 310, 410, 510, 910). The one or more transformable arms (110, 310, 410, 510, 910) may support one or more propulsion units, and transform between a flight configuration where the propulsion units of the arms effect flight of the aerial vehicle, and a landing configuration, wherein the transformable arms (110, 310, 410, 510, 910) are used as a landing support that bears weight of the aerial vehicle when the aerial vehicle is not in flight. Using the transformable arms (110, 310, 410, 510, 910) as legs when the UAV is in a landed state permits the UAV to reduce weight and reduce obstruction to a payload carried by the UAV when the UA is in flight.
Abstract:
Disclosed is a drone capable of operating in an aqueous environment. The drone may include a buoyant structure configured to provide buoyancy. Further, the drone may include one or more propulsion units configured to propel the drone. Furthermore, the drone may include an upper camera disposed on an upper side of the drone. Additionally, the drone may include a lower camera disposed on a lower side of the drone. Further, each of the upper camera and the lower camera may be configured to capture images. Furthermore, one or more legs configured to enable the drone to stand on a solid surface. Additionally, the drone may include one or more leg-actuators coupled to the one or more legs. Further, the one or more leg-actuators may be configured to change a state of the one or more legs to one of an extended state and a retracted state.
Abstract:
A vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV) system including: a rearward facing tang extending from a rear fuselage portion of a VTOL UAV; one or more metallic contacts disposed on an exterior surface of the tang; a UAV pod including a landing surface; and an opening disposed in the landing surface to receive the tang.
Abstract:
Systems, apparatuses, and methods are provided herein for stabilizing an unmanned aerial system. An apparatus for stabilizing an unmanned aerial system comprises a ring member and a pair of attachment members each having a first end and a second end, the first end being configured to attach to a multicopter and a second end being coupled to the ring member. Wherein the pair of attachment members holds the ring member such that a plane of a circumference of the ring member is generally parallel to blades of the multicopter.
Abstract:
A vertical take-off and landing (VTOL) unmanned aerial vehicle (UAV) system including: a rearward facing tang extending from a rear fuselage portion of a VTOL UAV; one or more metallic contacts disposed on an exterior surface of the tang; a UAV pod including a landing surface; and an opening disposed in the landing surface to receive the tang.
Abstract:
This disclosure is directed to an unmanned aerial vehicle (“UAV”) that transitions in-flight between vertical flight configuration and horizontal flight configuration by changing an orientation of the UAV by approximately ninety degrees. The UAV may include propulsion units that are coupled to a wing. The wing may include wing segments rotatably coupled together by pivots that rotate to position the propulsion units around a center of mass of the UAV when the fuselage is oriented perpendicular with the horizon. In this vertical flight configuration, the UAV may perform vertical flight or hover. During the vertical flight, the UAV may cause the wing to extend outward via the pivots such that the wing segments become positioned substantially parallel to one another and the wing resembles a conventional fixed wing. With the wing extended, the UAV assumes a horizontal flight configuration that provides upward lift generated from the wing.
Abstract:
The present disclosure is directed toward systems and methods for autonomously landing an unmanned aerial vehicle (UAV). In particular, systems and methods described herein enable a UAV to land within and interface with a UAV ground station (UAVGS). In particular, one or more embodiments described herein include systems and methods that enable a UAV to conveniently interface with and land within a UAV ground station (UAVGS). For example, one or more embodiments include a UAV that includes a landing base and landing frame that interfaces with a landing housing of a UAVGS.