Abstract:
A method for manufacturing an optical fiber preform includes a process A of applying flame polishing to a center glass rod, a process B of determining a ratio ra/rb, which is a ratio of a radius ra of the center glass rod expressed in millimeters with respect to a radius rb of a target optical fiber preform expressed in millimeters, based on a refractive index profile of a target optical fiber preform, and a process C of determining an amount of fine glass particles to be deposited on the center glass rod so that a ratio ra/rb/c falls within a range from 0.002 to 0.01, where nullcnull is a maximum value of hydroxyl group concentration expressed in ppm in the vicinity of a boundary between the center glass rod and an outer layer, which is formed by depositing fine glass particles on the center rod and by being vitrified.
Abstract:
The present invention relates to a method of making a soot particle and apparatus for making such soot particle. Preferably the method of making the soot particle is substantially free of the step of combusting a fuel and substantially free of the step of forming a plasma. Preferably, the apparatus is devoid of a heating element associated with both combustion and formation of a plasma. A preferred technique for at least one heating step for forming the doped soot particle is induction heating.
Abstract:
A process produces a glass overcladding tube from a silica gel body. The process includes passing the gel body through a hot zone under conditions that cause partial sintering of the gel body and repassing the gel body through the hot zone under conditions that further sinter the gel body into a glass overcladding tube.
Abstract:
In a known optical component a cylindrical glass core of synthetic quartz glass contains hydroxyl groups, a maximum 200 wt.-ppm of chlorine, and no dopant in the form of a metal oxide. The glass core is axially enveloped by a glass mantle of doped quartz glass which has a lower refractive index than the glass core. Setting out from this, in order to offer an optical component of quartz glass for broad-band transmission, especially for broad-band spectroscopy, which is characterized by low attenuation over a broad range of wavelengths, it is proposed by the invention that the core glass contain less than 5 wt.-ppm of hydroxyl groups.
Abstract:
A large optical preform 303 is made by a modified chemical vapor deposition (MCVD) process by depositing successive layers of core and cladding materials onto the inside surface of a rotating glass tube 33 having a hydroxyl ion (OH.sup.-) level that is less than 0.5 parts per million (ppm) by weight. The tube is then collapsed inwardly to form a core rod 301 in which the deposited core material 31 has a diameter that is greater than about 5 millimeters and the deposited cladding material 32 has an outside diameter that is less than about 15 millimeters. A machine-vision system 140, 150, 160 monitors and controls the diameter of the glass tube by regulating the pressure within the tube. Moreover, the machine-vision system monitors and controls the straightness of the tube by varying its rotational speed according to angular position. After the core rod 301 is formed, it is plasma etched to remove contaminants, and then overclad with two glass jackets 34, 35 having a hydroxyl ion (OH.sup.-) level that is less than 1.0 ppm by weight to create a large preform 303 from which about 400 kilometers of singlemode optical fiber can be drawn per meter of length.
Abstract:
Disclosed is an optical fiber possible to prevent it from increasing an optical loss occurring during fabrication of a single mode fiber preform and extraction thereof and enhance an optical transmission efficiency, a method of producing the same comprising the steps of forming a first quartz tube having a first thermal conductivity, said first quartz tube being used as a clad; depositing a core layer and a clad layer inside said first quartz tube to form a preliminary perform by heating of said fist quartz tube; forming a second quartz tube having a second thermal conductivity lower than said first thermal conductivity; and depositing said second quartz tube to said preliminary preform by heating to produce said optical fiber preform.
Abstract:
The invention relates to a process for the preparation of a quartz glass body comprising the process steps i.) Providing a silicon dioxide granulate, wherein the silicon dioxide granulate was made from pyrogenic silicon dioxide powder and the silicon dioxide granulate has a BET surface area in a range from 20 to 40 m2/g, ii.) Making a glass melt out of silicon dioxide granulate in an oven and iii.) Making a quartz glass body out of at least part of the glass melt, wherein the oven has at least a first and a further chamber connected to one another via a passage, wherein the temperature in the first chamber is lower than the temperature in the further chambers. The invention further relates to a quartz glass body which is obtainable by this process. The invention further relates to a light guide, an illuminant and a formed body, which are each obtainable by further processing of the quartz glass body.
Abstract:
A perforated quartz glass tube includes a jacket tube containing a quartz glass material, a plurality of cylindrical glass tubes which are inserted into a pore region of the jacket tube along an axial direction of the jacket tube, and contain a quartz glass material having a softening point higher than a softening point of the jacket tube, and a gap member which is inserted into a gap between the cylindrical glass tubes and a gap between the jacket tube and the cylindrical glass tube, and contains a quartz glass material having a softening point lower than a softening point of the cylindrical glass tube.
Abstract:
An easily producible optical fiber preform which is drawn to an optical fiber having a core containing a sufficient concentration of alkali metal is provided. An optical fiber preform 10 is composed of silica-based glass and includes a core portion 20 and a cladding portion 30. The core portion 20 includes a first core portion 21 including a central axis and a second core portion 22 disposed on the perimeter of the first core portion 21. The cladding portion 30 includes a first cladding portion 31 disposed on the perimeter of the second core portion 22 and a second cladding portion 32 disposed on the perimeter of the first cladding portion 31. The core portion 20 contains an alkali metal at an average concentration of 5 atomic ppm or more. The concentration of the OH group in the perimeter portion of the first cladding portion 31 is 200 mol ppm or more.