Abstract:
A method of in situ analysis of a biological sample comprising the steps of (a) staining the biological sample with N stains of which a first stain is selected from the group consisting of a first immunohistochemical stain, a first histological stain and a first DNA ploidy stain, and a second stain is selected from the group consisting of a second immunohistochemical stain, a second histological stain and a second DNA ploidy stain, with provisions that N is an integer greater than three and further that (i) if the first stain is the first immunohistochemical stain then the second stain is either the second histological stain or the second DNA ploidy stain; (ii) if the first stain is the first histological stain then the second stain is either the second immunohistochemical stain or the second DNA ploidy stain; whereas (iii) if the first stain is the first DNA ploidy stain then the second stain is either the second immunohistochemical stain or the second histological stain; and (b) using a spectral data collection device for collecting spectral data from the biological sample, the spectral data collection device and the N stains are selected such that a spectral component associated with each of the N stains is collectable.
Abstract:
Es wird ein Faserdetektor zur Detektion des Streulichtes oder des Fluoreszenzlichtes einer flüssigen Suspension beschrieben, der
eine einmodige oder mehrmodige optische Faser mit Gradientenindexlinse am Faserausgang zur Erzeugung paralleler Lichtstrahlen, eine Sammellinse oder ein Sammellinsensystem zur Fokussierung der parallelen Lichstrahlen auf einem Punkt innerhalb der Suspension, eine weitere einmodige oder mehrmodige, mit Gradientenindexlinse am Fasereingang versehene und mit einem Photodetektor verbundene optische Faser zur Detektion des zurückgestreuten und durch dieselbe Sammellinse oder dasselbe Sammellinsensystem parallelisierten Lichtes enthält.
Abstract:
A differential spectrometry system detects very narrow-band spectral features, while providing much higher optical transmittance and signal-to-noise ratios than prior optical-filter-based spectrometer systems. A plurality of light detectors (10a, 10b) detect light that falls within respective wide wavebands. The wide wavebands have overlapping and non-overlapping portions, one of which is the desired narrow waveband. The detector outputs are operated upon to produce an output signal (22) which includes substantially only the desired narrow waveband. In the preferred embodiment, the light detectors (10a, 10b) are implemented with a pair of optical detectors (30a, 30b) and respective optical interference filters (24a, 24b). The filters have substantially identical cut-off wavelengths (λ 2 ) and cut-on wavelengths that are shifted by Δλ with respect to each other (λ 1 and (λ 1 +Δλ), respectively). The detector outputs are differenced with an operational amplifier (33), so that detector signals resulting from spectral features common to both detectors (30a, 30b) are canceled. The remaining signal (36) varies according to the amount of light that falls between wavelength boundaries [λ 1 and (λ 1 +Δλ)]. A preferred method of fabricating the optical interference filters (24a, 24b) is also provided.
Abstract:
In dem Verfahren und der Vorrichtung zur Bestimmung von Diffusionsparametern, Konzentration, Größe oder Strömungsverhalten von Partikeln in einer Probe, werden Anregungslicht einer Lichtquelle in die Probe geleitet, Raman-Streulicht aus einem Beobachtungsvolumen der Probe aufgefangen und einem Spektrographen zugeführt wird, wo es in Spektrallinien zerlegt wird, wobei die Intensität mindestens einer Spektrallinie mindestens 10 mal pro Sekunde mit jeweils einem Photodetektor gemessen wird, und aus den gemessenen Intensitätswerten für die jeweilige Spektrallinie durch eine Fluktuationsanalyse, vorzugsweise eine Autokorrelation oder eine Frequenzanalyse, Diffusionsparameter, Konzentration, Größe oder Strömungsverhalten der Partikel, denen die jeweilige Spektrallinie zuzuordnen ist, berechnet. Bei diesem Verfahren können auch Signale verschiedener Spektrallinien oder -banden oder Signale von Raman-Streulicht, quasielastisch gestreutem Licht und Fluoreszenzlicht miteinander korreliert werden.
Abstract:
A photodetection module includes a photodetector and a fixing member. The photodetector includes a semiconductor substrate, a mesa portion, a first contact layer, a second contact layer, and a first electrode formed in a planar shape on a major surface of the semiconductor substrate, and electrically connected to one of the first contact layer and the second contact layer. The fixing member includes an insulating substrate, and a first wiring formed in a planar shape on a major surface of the insulating substrate. A recessed portion is formed in the major surface of the insulating substrate, and at least a part of the mesa portion is disposed inside the recessed portion. The first electrode is electrically connected to the first wiring in a state where the first electrode is in surface contact with the first wiring.
Abstract:
Optical imaging or spectroscopy described can use laminar optical tomography (LOT), diffuse correlation spectroscopy (DCS), or the like. An incident beam is scanned across a target. An orthogonal or oblique optical response can be obtained, such as concurrently at different distances from the incident beam. The optical response from multiple incident wavelengths can be concurrently obtained by dispersing the response wavelengths in a direction orthogonal to the response distances from the incident beam. Temporal correlation can be measured, from which flow and other parameters can be computed. An optical conduit can enable endoscopic or laparoscopic imaging or spectroscopy of internal target locations. An articulating arm can communicate the light for performing the LOT, DCS, or the like. The imaging can find use for skin cancer diagnosis, such as distinguishing lentigo maligna (LM) from lentigo maligna melanoma (LMM).
Abstract:
A method of obtaining a measurement signal representative of the particle size distributions in nanocrystal suspensions that includes a step of providing a first light beam along a first axis to a first micro-retarder array to generate polarization wavefront shaped light. The shaped light is applied to an objective configured to focus two orthogonally polarized components of the polarization wavefront shaped light to produce first and second axially offset foci along the first axis. A sample having particles in suspension is disposed in one foci to produce a measurement optical signal having phase and intensity values corresponding to at least some of the particles in suspension. The method also includes determining intensity and quantitative phase information as a function of time based on the optical signals.
Abstract:
A method of analyzing a reservoir fluid comprising: providing an analyzer, wherein the analyzer is a molecular factor computational system; and determining at least one property of the reservoir fluid using the analyzer, wherein the step of determining comprises: causing or allowing energy to interact with the reservoir fluid; and detecting the interaction between the energy and the reservoir fluid.
Abstract:
A light wavelength measurement method of measuring a wavelength of target light includes: receiving target light on a second dispersion device that disperses the target light into a plurality of second beams which reach a plurality of positions corresponding to the wavelength of the target light; and measuring the wavelength of the target light, by using the plurality of the second beams as a vernier scale for measuring the wavelength of the target light within a wavelength range specified by a main scale.
Abstract:
A system and method of determining if a surface contains print or is a screen of a device is provided. The method is comprised of the steps of: acquiring a spectral wavelength signature of the surface; comparing the spectral wavelength signature of the surface to RGB triple-peak emission spectra; scanning the surface with an image-based scanner in non-illumination mode based upon the spectral wavelength signature of the surface corresponding to the RGB triple-peak emission spectra, and scanning the surface with an image-based scanner in illumination mode based upon the spectral wavelength signature of the surface not corresponding to the RGB triple-peak emission spectra.