Abstract:
A lateral-emitter field-emission device includes a thin-film emitter cathode (50) of thickness less than several hundred angstrom and has an edge or tip (110) with small radius of curvature. In the display cell structure, a cathodoluminescent phosphor anode (60), allowing a large portion of the phosphor anode's top surface to emit light in a desired direction. An anode contact layer contacts the phosphor anode (60) from below to form a buried anode contact (90) which does not interfere with light emission. The anode phosphor is precisely spaced apart form the cathode edge or tip and receives electrons emitted by the field emission from the edge or tip of the lateral-emitter cathode, when a small bias voltage is applied. The device may be configured as diode, triode, or tetrode, etc. having one or more control electrodes (140) and/or (170) positioned to allow control of current from the emitter to the phosphor anode by an electrical signal applied to the control electrode.
Abstract:
A lateral-emitter field emission device (10) has a gate (60) that is separated by an insulating layer (80) from a vaccum- or gas-filled microchamber environment (20) containing other elements of the device (10). For example, the gate (60) may be disposed external to the microchamber (20). The insulating layer (80) is disposed such that there is no vaccum- or gas-filled path to the gate for electrons that are emitted from a lateral emitter (40, 100). The insulating layer (70, 80) disposed between the emitter and the gate preferably comprises a material having a dielectric constant greater than one. The insulating layer also preferably has a low secondary electron yield over the device's operative range of electron energies. For display applications, the insulating layer is preferably transparent. Emitted electrons are confined to the microchamber (20) containing their emitter (100). Thus, the gate current component of the emitter current consists of displacement current only. This displacement current is a result of any change in potential of the gate relative to other elements such as, for example, relative to the emitter. Direct electron current from the emitter to the gate is prevented. An array of the devices comprises an array of microchambers, so that electron current from each emitter (100) can reach only the anode (50, 55) in the same microchamber, even for diode devices lacking a gate electrode (60). A fabrication process (S1-S28) is specially adapted for fabricating the device and arrays of such devices.
Abstract:
A self-gettering electron field emitter (30) has a first portion (40) formed of a low-work-function material for emitting electrons, and it has an integral second portion (50) that acts both as a low-resistance electrical conductor and as a gettering surface. The self-geterring emitter (30) is formed by disposing a thin film of the low-work-function material parallel to a substrate and by disposing a thin film of the low-resistance geterring material parallel to the substrate and in contact with the thin film of the low-work-function material. The self-geterring emitter (30) is particularly suitable for use in lateral field emission devices (10). The preferred emitter structure has a tapered edge (60), with a salient portion (45) of the low-work-function material extending a small distance beyond an edge (55) of the gettering and low resistance material. A fabrication process (S1-S6) is specially adapted for in situ formation of the self-gettering electron field emitters while fabricating microelectronic field emission devices.
Abstract:
A device useful as a display element has an electron emitter (40) and an anode (30) disposed to receive electrons emitted from the emitter. The anode has surface portions differing in resistivity, providing an electron sink portion (80) at the surface portion of lowest resistivity. A preferred embodiment has a lateral field-emission electron emitter (10) and has an anode formed by processes specially adapted to provide anode portions of differing resistivity, including the electron sink portion (80). The electron sink portion is preferably disposed at a position laterally spaced apart from the emitting tip of the device's electron emitter. In a particularly preferred fabrication process, the anode is formed by depositing a base layer, depositing and patterning an etch-stop layer (75) with an opening to define the electron-sink portion, forming an opening by etching overlying layers down to the etch-stop layer, and heating the base layer and etch-stop layer to form an anode surface that includes both an integral electron-sink portion and a cathodeluminescent phosphor (35) for emitting light. The fabrication process provides for fabricating a plurality of display element devices to make a flat panel display.
Abstract:
A process for fabricating, in a planar substrate, a hermetically sealed chamber for a field-emission cell or the like, allows operating the device in a vacuum or a low pressure inert gas. The process includes methods of covering an opening (160), enclosing the vacuum or gas, and methods of including an optional quantity of gettering material. An example of a device using such a hermetically sealed chamber is a lateral-emitter field-emission device (10) having a lateral emitter (100) parallel to a substrate (20) and having a simplified anode structure (70). In one simple embodiment, a control electrode (140) is positioned in a plane above the emitter edge (110) and automatically aligned to that edge. The simplified devices are specially adapted for field emission display arrays. An overall fabrication process uses steps (S1-S18) to produce the devices and arrays. Various embodiments of the fabrication process allow the use of conductive or insulating substrates (20), allow fabrication of devices having various functions and complexity, and allow covering a trench opening (160) etched through the emitter and insulator, thus enclosing the hermetically sealed chamber.
Abstract:
A lateral-emitter field emission device has a gate (30) that is separated by an insulating layer (40) from a vacuum- or gas-filled environment containing other elements of the device. For example, the gate may be disposed external to a microchamber (110). The insulating layer is disposed such that there is no vacuum- or gas-filled path to the gate for electrons that are emitted from a lateral emitter. The insulating layer disposed between the emitter and the gate preferably comprises a material having a dielectric constant greater than one. The insulating layer also preferably has a low secondary electron yield over the device's operative range of electron energies. For display applications, the insulating layer is preferably transparent. Emitted electrons are confined to the microchamber containing their emitter. Thus, the gate current component of the emitter current consists of displacement current only, and direct electron current from the emitter to the gate is prevented. An array of the devices comprises an array of microchamber, so that electron current from each emitter can reach only the anode in the same microchamber, even for diode devices lacking a gate electrode. A fabrication process is specially adapted for fabricating the device and arrays of such devices, including formation in situ of a vacuum microchamber.
Abstract:
A lateral field-emission device (10) has a lateral emitter (100) substantially parallel to a substrate (20) and has a simplified anode structure (70). The anode's top surface is precisely spaced apart from the plane of the lateral emitter and receives electrons emitted by field emission from the edge of the lateral emitter cathode, when a suitable bias voltage is applied. The device may be configured as a diode, or as a triode, tetrode, etc. having control electrodes (140) positioned to allow control of current from the emitter to the anode by an electrical signal applied to the control electrode.