Abstract:
A method, medium, and apparatus for allowing evaluation of property, such as damaged property, remotely and efficiently. A mobile computing device at the location of the property may be used to transmit video of the property to an adjuster, and to receive video and audio communications from the adjuster. The adjuster may be selected from a queue based on time waiting in the queue and/or a number of other statistics and attributes of the adjuster. The adjuster may converse with an owner of the property and capture video of the property in order to make an appraisal or determine the infeasibility of remote appraisal and the need to instruct another adjuster to perform a physical inspection.
Abstract:
A system for determining a subjective risk score may include a vehicle and/or a computing device associated with a user travelling within the vehicle. The computing device may receive input from the user when the user feels a sense of unease regarding a particular road segment upon which the vehicle is traveling. The system may further include a subjective risk analysis computing system that may be communicatively coupled to the computing device. The subjective risk analysis computing system may receive subjective risk information corresponding to the user's sense of unease regarding particular road segments and may process the subjective risk information to determine a subjective risk score for each of a plurality of road segments along a route. An insurance company may use this information to determine whether to adjust a quote or premium of an insurance policy.
Abstract:
Systems and methods are disclosed for generating a display of a navigation map. The system may comprise a historical data source device having, for example, a historical data source computer and a database storing historical data associated with one or more of vehicle accident data, traffic data, vehicle volume data, vehicle density data, road characteristic data, or weather data. The system may comprise a map data processing device having a map data processing computer and memory storing computer-executable instructions that, when executed by the map data processing computer, cause the map data processing device to, for example, determine, based on a location determining device, a location of a vehicle. The map data processing system may determine one or more historical factors based on the location of the vehicle. The map data processing system may receive, from the historical data source device and for the location, historical data associated with the one or more historical factors. Based on the location of the vehicle, one or more real time factors and real time data associated with the one or more real time factors may be calculated. The map data processing system may calculate, using the one or more historical factors and the one or more real time factors, a navigation score for each segment of a route from the location to a destination location. The map data processing system may determine one or more colors for each navigation score and/or generate a display of a navigation map comprising the one or more colors.
Abstract:
A method is disclosed for analyzing historical accident information to adjust driving actions of an autonomous vehicle over a travel route in order to avoid accidents which have occurred over the travel route. Historical accident information for the travel route can be analyzed to, for example, determine accident types which occurred over the travel route and determine causes and/or probable causes of the accident types. In response to determining accident types and causes / probable causes of the accident types over the travel route, adjustments can be made to the driving actions planned for the autonomous vehicle over the travel route. In addition, in an embodiment, historical accident information can be used to analyze available travel routes and select a route which presents less risk of accident than others.
Abstract:
Aspects of the disclosure relate to an automated iterative predictive modeling computing platform that iteratively requests additional data from external data sources to iteratively generate a more accurate insurance premium estimation. In some instances, the automated iterative predictive modeling computing platform may generate an insurance premium estimation using affordable insurance data and using estimated data in place of missing data. If the insurance premium estimation does not meet predefined confidence thresholds, the automated iterative predictive modeling computing platform may retrieve additional data that is more expensive but also has a likelihood to generate a more accurate insurance premium estimation. This process may be repeated using different data sets from different external data sources until a sufficiently accurate insurance premium estimate is generated by the automated iterative predictive modeling computing platform.
Abstract:
Aspects of the disclosure relate to using computer vision methods to forecast damage. A computing platform may receive historical images comprising aerial images of residential properties and historical loss data corresponding to the residential properties. Using the historical images and the historical loss data, the computing platform may train a computer vision model, which may configure the computer vision model to output loss prediction information directly from an image. The computing platform may receive a new image corresponding to a particular residential property, and may analyze the new image, using the computer vision model, which may directly result in a likelihood of damage score. Based on the likelihood of damage score, the computing platform may send likelihood of damage information and one or more commands directing a user device to display the likelihood of damage information, which may cause the user device to display the likelihood of damage information.
Abstract:
Methods, computer-readable media, software, and apparatuses include activating a telematics system to collect telematics data associated with operation of a vehicle during a first window of time, receiving, by a computing device associated with the vehicle, telematics data from the telematics system during the first window of time, identifying one or more parameters associated with operation of the vehicle based on analyzing the telematics data, determining whether the one or more parameters meets a safe driving threshold, and upon determining that the one or more parameters meets the safe driving threshold, transmitting the telematics data to a third party server or device.
Abstract:
Methods and systems for tracking driver behavior across a variety of vehicles are described herein. One or more first performance metrics which indicate performance of a first vehicle when driven by a user may be determined. One or more second performance metrics indicating performance of a second vehicle when driven by the user may be determined. The first vehicle and the second vehicle may be compared to determine a vehicle difference. The performance metrics may be compared. One or more third performance metrics that predict performance of a third vehicle, different from the first vehicle and the second vehicle, when driven by the user may be determined based on the vehicle difference and the comparison. Whether to provide the user access to the third vehicle may be determined based on the one or more third performance metrics.
Abstract:
Aspects of the disclosure relate to using machine learning for remote wake up of a mobile device. A computing platform may receive historical data corresponding to driving trip patterns. The computing platform may train a machine learning model using the historical data corresponding to the driving trip patterns. The computing platform may receive initial data corresponding to a particular individual, and input the initial data into the machine learning model, which may cause output of a predicted trip start time of a driving trip of the particular individual. The computing platform may send, to a mobile device corresponding to the particular individual, one or more commands directing the mobile device to wake up prior to the predicted trip start time and to initiate collection of driving trip data corresponding to the driving trip, which may cause the mobile device to be configured for the collection of driving trip data.
Abstract:
An intelligent prediction system includes one or more processors, one or more memory components, and machine-readable instructions that cause the intelligent prediction system to: receive text data comprising a plurality of speaker turn segments of a transcription of a conversation, each speaker turn segment of the plurality of speaker turn segments representative of a turn in the conversation, the plurality of speaker turn segments collectively representative of the conversation up to a point of time, generate a point in time bind probability based on a speaker turn segment bind probability of a speaker turn segment at the point in time and memory data associated with the plurality of segments up to the point in time, and generate a speaker turn segment impact score at the point in time by subtracting an immediately preceding point in time bind probability from the point in time bind probability.