Abstract:
A light-emitting device is provided with getter material (58) that can readily be distributed in a relatively uniform manner across the device's active light-emitting portion. An electron-emitting device is similarly provided with getter material (112, 110/112, 128, 132, and 142) that can readily be distributed relatively uniformly across the active electron-emitting portion of the device. Techniques such as thermal spraying, angled physical deposition, and maskless electrophoretic/dielectrophoretic deposition can be utilized in depositing the getter material.
Abstract:
A method for creating a color filter on a display screen that allows better and more efficient adhesion of color pigment crystals to the screen display structure. In one embodiment, the present invention creates a color filter on a glass substrate having a pixel-defining structure. The present embodiment first creates a color filter slurry by mixing a polyvinyl alcohol solution with a color crystal pigment. The color filter slurry is then applied onto the interior surface of the display screen. The slurry is then dried. The dried color filter slurry is then exposed to an UV light from the exterior side of the display screen. The UV light exposes the color filter slurry through a photomask and through the display screen. The excess layer of color filter slurry is then removed, leaving behind a color filter of desired transmission wavelength such that light having similar wavelength are substantially transmitted and light of wavelengths different from said color pigment crystals are substantially filtered out by absorption.
Abstract:
A method for forming a conductively coated matrix structure for separating rows and columns of sub-pixels on the faceplate of a flat panel display device. In one embodiment, the present invention deposits a photoresistive material over the interior surface of a faceplate having a non-conductive matrix structure formed thereon. The photoresistive material is deposited into sub-pixel regions separated by the matrix structure. The photoresistive material is dried and exposed in the sub-pixel regions. After unexposed photoresistive material is removed, a layer of aluminum is evaporated over the interior surface of the faceplate such that the matrix structure and the exposed layer of photoresistive material in the sub-pixel regions is coated with a conductive layer of aluminum. Next, the present invention applies an etchant to the exposed photoresistive material disposed in the sub-pixel regions. The etchant removes the exposed photoresistive material and the overlying conductive layer of aluminum from the sub-pixel regions such that the conductive layer of aluminum remains only on the matrix structure, and does not cover the sub-pixel regions.
Abstract:
A flat panel display includes a spacer with a coating material applied over the spacer. The coating material is characterized by formula Psc > 100(Psw) and r
Abstract:
An electrochemical technique is employed for removing certain material from a partially finished structure without significantly chemically attacking certain other material of the same chemical type as the removed material. The partially finished structure contains a first electrically non-insulating layer (52C) consisting at least partially of first material, typically excess emitter material that accumulates during the deposition of the emitter material to form electron-emissive elements (52A) in an electron emitter, that overlies an electrically insulating layer (44). An electrically non-insulating member, such as an electron-emissive element, consisting at least partially of the first material is situated at least partly in an opening (50) extending through the insulating layer. With the partially finished structure so arranged, at least part of the first material of the first non-insulating layer is electrochemically removed such that the non-insulating member is exposed without significantly attacking the first material of the non-insulating member.
Abstract:
An electrochemical technique is employed for removing certain material from a partially finished structure without significantly chemically attacking certain other material of the same chemical type as the removed material. The partially finished structure contains a first electrically non-insulating layer (52C) consisting at least partially of first material, typically excess emitter material that accumulates during the deposition of the emitter material to form electron-emissive elements (52A) in an electron emitter, that overlies an electrically insulating layer (44). An electrically non-insulating member, such as an electron-emissive element, consisting at least partially of the first material is situated at least partly in an opening (50) extending through the insulating layer. With the partially finished structure so arranged, at least part of the first material of the first non-insulating layer is electrochemically removed such that the non-insulating member is exposed without significantly attacking the first material of the non-insulating member.
Abstract:
A voltage-adjustment section (20) of an electronic device converts an input control voltage (V1) into an output control voltage (V0) in such a way that a collector current (ICP) form with electrons emitted from an emitter (EP) of an emission/collection cell (26), or triode, varies in a desired, typically linear, manner with the input control voltage. The triode further includes a collector (CP) that carries the collector current and a gate electrode (GP) that regulates the collector current as a function of the output control voltage. Control of the collector current so as to achieve the desired current/voltage relationship is achieved with an analog control loop containing the triode and an amplifier (28) coupled between the triode's collector and gate electrode. The triode thus typically has a linear gamma characteristic relative to the input control voltage. The voltage-adjustment section is suitable for use in a display device such as a flat-panel display.
Abstract:
A method for creating a color filter on a display screen that allows better and more efficient adhesion of color pigment crystals to the screen display structure. In one embodiment, the present invention creates a color filter on a glass substrate having a pixel-defining structure. The present embodiment first creates a color filter slurry by mixing a polyvinyl alcohol solution with a color crystal pigment. The color filter slurry is then applied onto the interior surface of the display screen. The slurry is then dried. The dried color filter slurry is then exposed to an UV light from the exterior side of the display screen. The UV light exposes the color filter slurry through a photomask and through the display screen. The excess layer of color filter slurry is then removed, leaving behind a color filter of desired transmission wavelength such that light having similar wavelength are substantially transmitted and light of wavelengths different from said color pigment crystals are substantially filtered out by absorption.
Abstract:
A method for forming a conductively coated matrix structure for separating rows and columns of sub-pixels on the faceplate of a flat panel display device. In one embodiment, the present invention deposits a photoresistive material over the interior surface of a faceplate having a non-conductive matrix structure formed thereon. The photoresistive material is deposited into sub-pixel regions separated by the matrix structure. The photoresistive material is dried and exposed in the sub-pixel regions. After unexposed photoresistive material is removed, a layer of aluminum is evaporated over the interior surface of the faceplate such that the matrix structure and the exposed layer of photoresistive material in the sub-pixel regions is coated with a conductive layer of aluminum. Next, the present invention applies an etchant to the exposed photoresistive material disposed in the sub-pixel regions. The etchant removes the exposed photoresistive material and the overlying conductive layer of aluminum from the sub-pixel regions such that the conductive layer of aluminum remains only on the matrix structure, and does not cover the sub-pixel regions.