Abstract:
A method of detecting cellular damage within a subject comprises transmitting low frequency ultrasound (20MHz or below) into a selected site within the subject wherein the selected site has been exposed to a stress capable of causing cellular death at the selected site. At least a portion of ultrasound backscattered from the ultrasound transmitted into the selected site is received. The received backscattered ultrasound is compared to a control backscatter measurement. An increase or a decrease in intensity or spectral slope of the received backscattered ultrasound when compared to the control backscatter measurement indicates cellular death or damage at the selected site within the subject.
Abstract:
A method of detecting cellular damage within a subject comprises transmitting low frequency ultrasound (20MHz or below) into a selected site within the subject wherein the selected site has been exposed to a stress capable of causing cellular death at the selected site. At least a portion of ultrasound backscattered from the ultrasound transmitted into the selected site is received. The received backscattered ultrasound is compared to a control backscatter measurement. An increase or a decrease in intensity or spectral slope of the received backscattered ultrasound when compared to the control backscatter measurement indicates cellular death or damage at the selected site within the subject.
Abstract:
A non-invasive method of monitoring apoptosis in cell culture, ex-vivo tissues and in-vivo tissues using high frequency ultrasound imaging is provided. The method includes the steps of: 1) imaging a selected site of the cell culture or tissues using high frequency (above 20 MHz) ultrasound imaging (before image); 2) exposing the selected site to an apoptosis-inducing stress; 3) imaging the selected site or a portion thereof, using ultrasound imaging at subsequent timed intervals (after image(s)); 4) measuring the signal amplitude of a region of interest of the selected site in the before and after images; 5) comparing the signal amplitude measurements for the regions of interest in the before and after images and determining whether the after image regions exhibit an increase in amplitude as compared to the before image regions which is an indication that apoptosis has begun; and 6) measuring the change in the frequency spectrum of the radiofrequency ultrasound backscatter signal in the region of interest in the before and after images and confirming that apoptosis has begun when the slope of the frequency spectrum has increased.