Abstract:
PURPOSE: A terminal device and a method for selecting a relay node of the terminal device are provided to reduce the system complexity by sequentially checking channel state information for plural relay nodes in a cooperative communication system. CONSTITUTION: A sequence setting unit(211) sets a test sequence for plural relay nodes, and a measurement unit(212) measures an output SNR(Signal to Noise Ratio) for a high relay node based on the test sequence. If the output SNR is larger than the threshold value, a selection unit(213) selects the high relay node as a relay node which performs the cooperative communication.
Abstract:
PURPOSE: A sliding device and a portable communication device including the same are provided to extend the lifetime of spring using compression and extension springs altogether for sliding. CONSTITUTION: A rotary supporting member(130) comprises the first accommodation space and is fixed and coupled to the body housing. A sliding member comprises the second accommodation space and is fixed and coupled to the sliding housing. The sliding member is combined with the rotary supporting member to slide in the sliding of the sliding housing. A pair of compressive springs(150) is included in the first accommodation space and provides the compressive force for the sliding. A pair of extension springs(160) is included in the second accommodation space and provides the tensile force for the sliding.
Abstract:
PURPOSE: A decoder using perturbation vector for a multiple input multiple output communication system and a decoding method thereof are provided to use a pre perturbation decoder or a post perturbation vector perturbing estimation values of a receiving vector or a transmitting symbol, thereby improving decoding performance. CONSTITUTION: A post perturbation decoder includes a spatial filter(210), a post perturbation vector provider(220), a candidate extractor(230) and a determiner(240). The spatial filter performs spatial filtering of a received vector. The post perturbation vector provider provides post perturbation vectors. The candidate extractor perturbs an estimation value of a transmission symbol vector through the post perturbation vectors. The candidate extractor extracts candidates of the transmission symbol vector. The determiner performs determination based on the candidates of the transmission symbol vector.
Abstract:
패킷 수집(Packet Aggregation)을 위한 버퍼 장치 및 방법은, 상기 패킷들의 위치정보를 비트맵으로 구성하고 있는 수집 생성기와, 상기 패킷들의 위치 정보를 이용하여 패킷을 수집하는 수집 제어기에서, 비트맵으로 구성된 프레임 디스크립터(Frame Descriptor)들의 위치정보를 이용하여 패킷들을 수집하는 과정과, 상기 수집된 패킷들을 하나의 수집 PSDU(PHY Service Data Unit)으로 구성하여 목적지로 전송하는 과정과, 상기 전송한 결과를 상기 프레임 디스크립터의 상태 정보에 기록하는 과정을 포함하여, 수집(Aggregation)시 TID(Traffic ID) 검색에 따른 오버헤드가 줄기 때문에 상기 수집에 따른 검색 시간을 단축할 수 있고, 상기 비트맵을 통하여 같은 종류의 트래픽은 상기 TID가 같기 때문에 대략적인 지연 시간 예상이 가능하므로 상기 TID별로 선택적인 프레임의 폐기가 가능하여 QoS를 향상 시킬 수 있는 이점이 있다. 패킷 수집(Packet Aggregation), 버퍼 디스크립터(Buffer Descriptor), 프레임 디스크립터(Frame Descriptor), 비트맵(Bitmap)
Abstract:
막 형성 방법은 제1 웨이퍼에 티타늄 막 및 티타늄 질화막을 순차적으로 형성한다. 상기 티타늄 질화막 형성시 챔버의 내부에 흡착된 반응 부산물을 제거한다. 이후 제2 웨이퍼에 대해 티타늄 막 형성, 티타늄 질화막 형성 및 반응 부산물 제거를 반복하여 수행한다. 따라서 막 형성시 티타늄 질화막 형성에 따른 반응 부산물의 리프팅을 방지할 수 있다.
Abstract:
A data transmitting/receiving device in a closed loop-type multi-antenna system and a method thereof are provided to enable a receiving device to configure feedback information by only common channel quality information and optimal channel quality information, thereby reducing the amount of feedback information. Channel quality information on each data stream is obtained through channel estimation for a receiving signal(310). At least one piece of channel quality information is selected by good sequence from the obtained channel quality information(312). Common channel quality information is calculated by using the obtained channel quality information(314). Indexes of the common channel quality information, the one channel quality information, data streams corresponding to the one channel quality information are transmitted to a transmission side as feedback information(316).
Abstract:
A layer forming method is provided to prevent powder from being produced on a stage and a showerhead by maintaining the showerhead at low temperature. A stage with a first protective layer is maintained at a first temperature, while a showerhead is maintained at a second temperature lower than the first temperature(S110). A second protective layer is formed in a chamber provided with the stage and the showerhead(S120). A layer is formed on a wafer in the chamber. When the layer is formed, by-products are removed from the inner surface of the chamber(S150). While the by-products are removed, the stage is maintained at the first temperature, while the showerhead is maintained at the second temperature.
Abstract:
반도체 소자의 제조에 사용되는 박막 형성 장치에 관한 것으로서, 펄싱 타입으로 제공되는 소스 물질들을 이용하여 반도체 기판 상부에 박막을 적층하기 위한 반응 공간을 갖는 반응 챔버를 포함한다. 그리고, 상기 반응 챔버의 반응 공간 내부에 잔류하는 반응 부산물을 제거하기 위한 라디칼 형태의 물질을 생성하는 리모트 플라즈마 생성기를 포함한다. 이때, 상기 소스 물질들은 제1 제공 라인을 통하여 제공되고, 상기 라디칼 형태의 물질은 제2 제공 라인을 통하여 제공된다. 그리고, 상기 박막 형성 장치는 상기 제1 제공 라인과 인접하게 배치되는 시점 이전에 위치하는 제2 제공 라인에 연결되고, 상기 제1 제공 라인으로부터 상기 반응 챔버의 반응 공간으로 상기 소스 물질들을 제공할 때 상기 소스 물질들이 상기 제2 제공 라인으로 역류하는 것을 방지하기 위한 물질을 제공하는 제3 제공 라인을 포함한다.
Abstract:
A method for fabricating a metal silicide contact of a semiconductor device is provided to control fitting generation upon fabricating a metal silicide and to prevent an overgrowth of the metal silicide by depositing a titanium layer in the state of curing defect sites. An insulating layer(102) is formed on a semiconductor substrate(100) having a conductive region on a surface thereof. The insulating layer is etched to form a contact hole(104) exposing the conductive region. The surface of the semiconductor substrate is processed by SiH4 gas. A titanium layer(108) is formed on a sidewall and a bottom surface of the contact hole, at the same time a metal silicide(110) is formed on an interface of the titanium layer and the semiconductor substrate. A titanium nitride layer(112) is formed on the titanium layer. A metal layer(114) is formed on the titanium nitride layer.