탄소 코팅된 양극 활물질 제조방법
    12.
    发明公开
    탄소 코팅된 양극 활물질 제조방법 有权
    生产用碳化硅制成阴极活性材料的方法

    公开(公告)号:KR1020140072569A

    公开(公告)日:2014-06-13

    申请号:KR1020120140234

    申请日:2012-12-05

    CPC classification number: H01M4/583 H01M4/366

    Abstract: Disclosed is a manufacturing method of a cathode active material. In order to manufacture a cathode active material, a reaction solution is manufactured by mixing source materials in a polyol solvent, and combusted to manufacture first cathode active material powder. The first cathode active material powder is coated with a flammable organic solution and combusted to manufacture second cathode active material powder. The cathode active material manufactured according to the present invention has improved capacity and crystallinity.

    Abstract translation: 公开了阴极活性物质的制造方法。 为了制造正极活性物质,通过将源材料混合在多元醇溶剂中制造反应溶液,并将其燃烧制造第一正极活性物质粉末。 第一阴极活性材料粉末涂覆有易燃有机溶液并燃烧以制造第二正极活性材料粉末。 根据本发明制造的阴极活性材料具有改善的容量和结晶度。

    폐기물 슬러지를 이용한 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 이용한 리튬 이차 전지
    16.
    发明授权
    폐기물 슬러지를 이용한 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 이용한 리튬 이차 전지 有权
    使用废污泥的可再充电锂离子电池用阳极活性物质及其制备方法以及使用其制造的锂离子电池

    公开(公告)号:KR101125260B1

    公开(公告)日:2012-03-21

    申请号:KR1020090101937

    申请日:2009-10-26

    Abstract: 본 발명은 폐기물 슬러지를 이용한 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 이용한 리튬 이차 전지에 관한 것으로서, 더욱 상세하게는 하수, 오폐수 등의 오염수의 수처리 공정으로부터 발생되는 폐기물 슬러지로부터 회수된 산화티타늄 화합물을 음극 활물질로 이용하여 폐기되는 자원을 재활용할 수 있는 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 이용한 리튬 이차 전지에 관한 것이다.
    상기의 목적을 달성하기 위한 본 발명의 폐기물 슬러지를 이용한 리튬 이차 전지용 음극 활물질은 응집제로서 가수분해성 티타늄 화합물을 오염수에 투입하여 형성시킨 응집체를 티타늄(Ti) 공급원 물질로 하여 얻어진 산화티타늄 화합물을 포함하는 것을 특징으로 한다.
    따라서 본 발명의 음극 활물질은 합성이 용이하며, 결정성이 우수하고 입자가 균일하여 초기방전용량이 높고 충방전의 횟수가 많더라도 방전용량이 크게 저하되지 않는 등 전기화학적으로 안정한 특성을 갖는다.
    리튬, 리튬전지, 이차전지, 전극, 음극, 활물질, 이산화티타늄, 응집체

    급속 충방전이 가능한 리튬 이차전지용 고용량 음극소재 및 그 제조 방법
    17.
    发明公开
    급속 충방전이 가능한 리튬 이차전지용 고용량 음극소재 및 그 제조 방법 有权
    用于锂二次电池的高容量和高容量的阳极材料及其合成方法

    公开(公告)号:KR1020110062293A

    公开(公告)日:2011-06-10

    申请号:KR1020090118971

    申请日:2009-12-03

    CPC classification number: C01G23/005 C01P2002/72 C01P2006/40

    Abstract: PURPOSE: A process for manufacturing a negative electrode material with high capability for a lithium secondary battery is provided to obtain Li4Ti5O12 nanoparticles without separate heat treatment using a solvent heat sythesis method. CONSTITUTION: A process for manufacturing a negative electrode material including Li4Ti5O12 as a transition metal oxide having a nanocrystalline structure comprises the steps of: preparing a mixed solution in which a titanium-based compound and a lithium-based compound solution in a polyol solvent; performing the reaction of the mixed solution in a container in which Teflon is lined at a constant temperature; and cooling the resultant at room temperature, washing the lithium titanium oxide precipitate, filtering the washed material, and drying the filtered materil.

    Abstract translation: 目的:提供一种用于锂二次电池的高性能负极材料的制造方法,以获得Li4Ti5O12纳米粒子,而不用使用溶剂热合成法进行单独的热处理。 构成:包括具有纳米晶体结构的过渡金属氧化物的Li 4 Ti 5 O 12负极材料的制造方法包括以下步骤:制备其中在多元醇溶剂中钛基化合物和锂基化合物溶液的混合溶液; 将混合溶液在恒温下排列在特氟隆的容器中进行反应; 并在室温下冷却,洗涤锂二氧化钛沉淀物,过滤洗过的物料,并干燥过滤的物质。

    이산화망간 나노입자의 제조방법
    18.
    发明授权
    이산화망간 나노입자의 제조방법 失效
    MNO2纳米颗粒的合成方法

    公开(公告)号:KR100842295B1

    公开(公告)日:2008-06-30

    申请号:KR1020070032814

    申请日:2007-04-03

    Abstract: A preparation method of manganese dioxide nano-particle is provided to obtain manganese dioxide nano-particle economically in a simple process for short time by oxidation-reduction reaction of separate aqueous solutions of manganese chloride and potassium permanganate. A preparation method of manganese dioxide nano-particle comprises steps of: preparing separate aqueous solution of MnCl2 and KMnO4(S10); adding KMnO4 aqueous solution to the MnCl2 aqueous solution under stirring(S20); stirring the mixture for about 1 hour(S30); filtering the mixture and drying the filtrate(S40); and analyzing the product precipitate(S50). In the oxidation-reduction reaction of the aqueous solutions, the manganese precursor optionally plays as an oxidant or as a reductant. The shape of the manganese dioxide nano-particle is controlled by the condition for synthesis in the aqueous solution or by the changes in the process for nucleus forming and for particle forming. Under the control of the precursor species and the synthesis condition, the manganese oxide optionally comprises potassium ion and sodium ion. Further, the nano-particle is gamma-MnO2 and has a diameter of 10 to 150 nm.

    Abstract translation: 提供二氧化锰纳米颗粒的制备方法,通过单独的氯化锰水溶液和高锰酸钾的氧化还原反应,在短时间内通过简单的方法经济地获得二氧化锰纳米颗粒。 二氧化锰纳米颗粒的制备方法包括以下步骤:制备单独的MnCl 2和KMnO 4水溶液(S10); 在搅拌下向KMCl 2水溶液中加入KMnO4水溶液(S20); 搅拌混合物约1小时(S30); 过滤混合物并干燥滤液(S40); 并分析产物沉淀物(S50)。 在水溶液的氧化还原反应中,锰前体可任选地作为氧化剂或还原剂起作用。 二氧化锰纳米颗粒的形状由水溶液中的合成条件或核成型和颗粒形成过程的变化控制。 在前体物质和合成条件的控制下,锰氧化物任选地包含钾离子和钠离子。 另外,纳米粒子是γ-MnO 2,直径为10〜150nm。

Patent Agency Ranking