Abstract:
양극 활물질의 제조방법이 개시된다. 양극 활물질을 제조하기 위하여 폴리올 용매에 원료물질들을 혼합하여 반응 용액을 제조하고, 이를 연소시켜 제1 양극 활물질 분말을 제조한다. 이어서, 제1 양극 활물질 분말을 가연성 유기 용액으로 피복한 후 이를 연소시켜 제2 양극 활물질 분말을 제조한다. 이와 같은 방법으로 제조된 양극 활물질은 향상된 용량 및 결정성을 갖는다.
Abstract:
Disclosed is a manufacturing method of a cathode active material. In order to manufacture a cathode active material, a reaction solution is manufactured by mixing source materials in a polyol solvent, and combusted to manufacture first cathode active material powder. The first cathode active material powder is coated with a flammable organic solution and combusted to manufacture second cathode active material powder. The cathode active material manufactured according to the present invention has improved capacity and crystallinity.
Abstract:
본 발명은 스피넬 결정구조를 가지는 하기 화학식 1의 리튬 망간계 산화물을 제조하는 방법으로서, 환원 분위기에서 하기 화학식 2의 리튬 망간계 산화물과 리튬 화합물을 반응시켜 화학식 1의 리튬 망간계 산화물의 제조 방법을 제공한다. Li 1 + x M y Mn 2 - y O 4 - z Q z (1) Li 1 +x' M' y' Mn 2- x' - y' O 4 - z' Q' z' (2) 상기 식에서, x, x', y, y', z, z', M, M', Q 및 Q'은 명세서에 정의되어 있는 바와 같다. 본 발명에 따른 스피넬 결정구조를 가지는 리튬 망간계 산화물은 과잉의 리튬을 포함하고 있으며, 그에 따라 3V 영역에서 용량 및 사이클 특성도 우수하다.
Abstract:
본 발명은 그라핀 나노시트 합성방법에 관한 것으로, 보다 구체적으로는 초급속연소법을 이용함으로써 종래 그라핀 나노시트 합성을 위해 필요한 복잡한 공정들(기계적인 방법, 화학적인 방법, 전기화학적인 방법 등)을 거치지 않고 수초 내지 수분 내에 그라파이트 산화물(Graphite Oxide)로부터 그라핀 나노시트를 합성할 수 있는 초급속 연소법을 이용한 그라핀 나노시트 합성방법에 관한 것이다.
Abstract:
PURPOSE: A manufacturing method of a lithiated electrode material is provided to manufacture an electrode material consisting of uniform particles having sizes of 500 or less, and having relatively excellent performance in low temperatures. CONSTITUTION: A manufacturing method of a lithiated electrode material using polyol process comprises a step of manufacturing polyol reactant composition by adding transition metal compound, dissolving a lithium-based compound into a polyol solvent; a step of raising temperature of the manufactured polyol reaction composition to 240-260°C; a step of maintaining the risen temperature of the reactant composition, and cooling the reactant composition to generate the lithiated electrode material.
Abstract:
본 발명은 폐기물 슬러지를 이용한 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 이용한 리튬 이차 전지에 관한 것으로서, 더욱 상세하게는 하수, 오폐수 등의 오염수의 수처리 공정으로부터 발생되는 폐기물 슬러지로부터 회수된 산화티타늄 화합물을 음극 활물질로 이용하여 폐기되는 자원을 재활용할 수 있는 리튬 이차 전지용 음극 활물질과 그 제조방법 및 이를 이용한 리튬 이차 전지에 관한 것이다. 상기의 목적을 달성하기 위한 본 발명의 폐기물 슬러지를 이용한 리튬 이차 전지용 음극 활물질은 응집제로서 가수분해성 티타늄 화합물을 오염수에 투입하여 형성시킨 응집체를 티타늄(Ti) 공급원 물질로 하여 얻어진 산화티타늄 화합물을 포함하는 것을 특징으로 한다. 따라서 본 발명의 음극 활물질은 합성이 용이하며, 결정성이 우수하고 입자가 균일하여 초기방전용량이 높고 충방전의 횟수가 많더라도 방전용량이 크게 저하되지 않는 등 전기화학적으로 안정한 특성을 갖는다. 리튬, 리튬전지, 이차전지, 전극, 음극, 활물질, 이산화티타늄, 응집체
Abstract:
PURPOSE: A process for manufacturing a negative electrode material with high capability for a lithium secondary battery is provided to obtain Li4Ti5O12 nanoparticles without separate heat treatment using a solvent heat sythesis method. CONSTITUTION: A process for manufacturing a negative electrode material including Li4Ti5O12 as a transition metal oxide having a nanocrystalline structure comprises the steps of: preparing a mixed solution in which a titanium-based compound and a lithium-based compound solution in a polyol solvent; performing the reaction of the mixed solution in a container in which Teflon is lined at a constant temperature; and cooling the resultant at room temperature, washing the lithium titanium oxide precipitate, filtering the washed material, and drying the filtered materil.
Abstract translation:目的:提供一种用于锂二次电池的高性能负极材料的制造方法,以获得Li4Ti5O12纳米粒子,而不用使用溶剂热合成法进行单独的热处理。 构成:包括具有纳米晶体结构的过渡金属氧化物的Li 4 Ti 5 O 12负极材料的制造方法包括以下步骤:制备其中在多元醇溶剂中钛基化合物和锂基化合物溶液的混合溶液; 将混合溶液在恒温下排列在特氟隆的容器中进行反应; 并在室温下冷却,洗涤锂二氧化钛沉淀物,过滤洗过的物料,并干燥过滤的物质。
Abstract:
A preparation method of manganese dioxide nano-particle is provided to obtain manganese dioxide nano-particle economically in a simple process for short time by oxidation-reduction reaction of separate aqueous solutions of manganese chloride and potassium permanganate. A preparation method of manganese dioxide nano-particle comprises steps of: preparing separate aqueous solution of MnCl2 and KMnO4(S10); adding KMnO4 aqueous solution to the MnCl2 aqueous solution under stirring(S20); stirring the mixture for about 1 hour(S30); filtering the mixture and drying the filtrate(S40); and analyzing the product precipitate(S50). In the oxidation-reduction reaction of the aqueous solutions, the manganese precursor optionally plays as an oxidant or as a reductant. The shape of the manganese dioxide nano-particle is controlled by the condition for synthesis in the aqueous solution or by the changes in the process for nucleus forming and for particle forming. Under the control of the precursor species and the synthesis condition, the manganese oxide optionally comprises potassium ion and sodium ion. Further, the nano-particle is gamma-MnO2 and has a diameter of 10 to 150 nm.