Abstract:
PURPOSE: A direct synthesis of ionic liquid with substituted perfluorinated alkyl group is provided to synthesize a target compound with high yield in a short time and improve process safety. CONSTITUTION: A direct synthesis of ionic liquid with substituted perfluorinated alkyl group of the chemical formula 1 comprises a step of reacting perfluorinated olefin compound of CFR1=CR2R3 and bronsted acid of YH with nitrogen-containing compound in a reaction group. The nitrogen-containing compound is amine compound, pyrrolidine, pyrrole, imidazole, 4,5-dihydrotriazole, triazole, morpholine, piperidine, piperazine, pyridine, pyridazine or triazine. The bronsted acid is HCl, HBr, HI, HBF4, HPF6,(CF3SO)2NH, CF3SO3H, CH3SO3H, HNO2, HNO3, CF3CO2H, or CH3CO2H. The perfluorinated olefin compound is CHF=CH2, CHF=CHF, CF2=CH2, CF2=CHF, CF2=CF2, CHF=CFCF3, CF2=CFCF3, or CF2=CFCF2CF3.
Abstract:
본 발명은 이온성 액체에 용해된 셀룰로오즈 용액에 관한 것으로서, 보다 상세하게 셀룰로오즈와 상호작용을 할 수 있는 관능기가 치환된 양이온 및 음이온으로 구성된 특정의 이온성 액체를 이용하여 셀룰로오즈를 용해시켜 제조된 셀룰로오즈 용액에 관한 것이다. 셀룰로오즈, 이온성 액체, 수소결합, 바이오메스
Abstract:
A method is provided to separate and recover pure SO2 only from a gas mixture generated from an IS(Iodine-Sulfur) cycle process even at a high temperature in a stable and succeeding manner through absorption and degassing processes using ionic liquid, and prevent loss of a solvent even in the repeated absorption and degassing processes by maintaining low vapor pressure and high temperature stability as compared with a conventional amine-based absorbent. As a method for separating and recovering sulfur dioxide from a gas mixture containing 40 to 80 wt.% of sulfur dioxide(SO2) and 20 to 60 wt.% of oxygen exhausted from an IS(Iodine-Sulfur) cycle process consisting of a decomposition reaction of sulfuric acid, a decomposition reaction of sulfur dioxide, and a decomposition reaction of iodic acid, a method for separating and recovering pure sulfur dioxide from the gas mixture in the IS cycle process using ionic liquid comprises the steps of: contacting the gas mixture with ionic liquid to allow the ionic liquid to absorb and separate sulfur dioxide(SO2) in the gas mixture in a temperature range of 20 to 50 deg.C; and degassing the sulfur dioxide that has been absorbed and separated from the gas mixture from the ionic liquid in a temperature range of 120 to 250 deg.C. The ionic liquid is ionically bonded compounds in which cations selected from imidazolium, pyrrolidinium, piperidinium, morpholinium and pyridinium are bonded with anions selected from hydrogen sulfate(HOSO3^-), methyl sulfate(CH3OSO3^-), ethyl sulfate(C2H6OSO3^-)methane sulfonate(CH3SO3^-), acetate(CH3COO^-), tetrafluoroborate(BF4^-), hexafluorophosphate(PF6^-), and chloride(Cl^-), or mixtures of the ionically bonded compounds. Further, the recovered sulfur dioxide has a recovery rate of 85 to 95% and purity of 98 to 99%.
Abstract:
본 발명은 글리세롤 카보네이트의 탈카르복실화 반응을 통한 글리시돌의 제조방법에 관한 것으로서, 더욱 구체적으로는 글리세롤 카보네이트의 탈카르복실화 반응을 통한 글리시돌의 제조방법에 있어서, 반응 촉매로서 이온성 액체 촉매를 첨가해주는 것을 특징으로 하는 글리시돌의 제조방법에 관한 것이다. 본 발명에 따르면 글리시돌을 높은 수율 및 선택성으로, 간편하고 단순하면서 환경친화적인 방법에 의해서 생산할 수 있다.
Abstract:
The present invention relates to a preparation method of glycidol through the decarboxylation of glycerol carbonate and, more particularly, to a preparation method of glycidol through the decarboxylation of glycerol carbonate which uses an ionic liquid catalyst as a reaction catalyst. According to the present invention, glycidol can be produced in high yield and selectivity by a convenient, simple, and environmentally-friendly method.
Abstract:
PURPOSE: A manufacturing method of glycerol carbonate using zinc catalyst and acid is provided to reuse the catalyst and to manufacture glycerol at high yield. CONSTITUTION: A manufacturing method of glycerol carbonate using zinc catalyst and acid is processed by reacting glycerol with urea. The Zn catalyst is ZnO or Zn alkoxy compound. The Zn alkoxy compound is a compound represented by chemical formula 1 or chemical formula 2. The acid is halogenated acid, inorganic acid or sulfonic acid. The halogenated acid is HF, HCl, HBr, HI, and the inorganic acid is HNO3, HNO2, and H2SO4. The sulfonic acid is toluene sulfonic acid(CH3PhSO3H), methanesulphonic acid (CH3SO3H), and trifluoromethane sulfonic acid (CF3SO3H). The reaction dose of the urea is 1- 5 times of the reaction dose of glycerol. The amount of the Zn catalyst is 0.1 - 5 mole% of the glycerol amount.
Abstract:
본발명은함불소올레핀을포함한이미다졸륨계이온성액체화합물을이용한이산화탄소흡수제에관한것으로, 본발명에따른함불소올레핀을포함한이미다졸륨계이온성액체화합물은자체의증기압이아주낮고, 열적, 화학적안정성이뛰어나며, 우수한이산화탄소흡수능을보유하고있을뿐만아니라, 흡수된이산화탄소의탈기도비교적낮은온도에서수행할수 있으며, 반복사용시에도흡수능의감소가거의없어이산화탄소흡수제로서효과적으로사용될수 있다.
Abstract:
PURPOSE: A hydrogen generation, and the storage and supply side can be high efficiency realized. The providing hydrogen tank can be kept with the low pressure and light weight. CONSTITUTION: A hydrogen supply tank(150) comprises a hydrogen receiving container and a hydrogen generating container. The hydrogen generating material capable of dehydrogenation the hydrogen receiving container has fever can be accepted. In the hydrogen generating container, the hydrogen exhaust path in which the created hydrogen can be exhausted is formed. The hydrogen generating container stores the hydrogen. It supplies to outside. In the tank, a tube(300) transferring the hydrogen between the tank can be formed.